I IIIC U	f the Course: Discrete Mathematical Structures	L	Т	P	Credit
Course	e Code: UITE0301	3	1	-	4
Course	e Pre-Requisite:				
Basic k	knowledge of mathematics, set theory				
Course	e Description:				
To im	part the necessary fundamental principles that is essential to s	study	cour	ses in	compute
science	e and related fields. To develop logical thinking and prerequi	site k	now	ledge	necessar
for skil	led software engineer.			•	
Course	e Objectives: To provide knowledge on				
1.Math	ematical logic				
2.Set th	neory and operations on Set				
3 Fund	ctions and relations				
J. Punc					
- · · ·	c terminologies of graph theory				
4.Basic					
4.Basic	e terminologies of graph theory				
4.Basic 5.Alge	e terminologies of graph theory				
4.Basic 5.Alge Course	e terminologies of graph theory briac system and application e Learning Outcomes:				
4.Basic 5.Alge	e terminologies of graph theory briac system and application e Learning Outcomes: After the completion of the course the student should be			Cogn	
4.Basic 5.Alge Course CO	 c terminologies of graph theory briac system and application c Learning Outcomes: After the completion of the course the student should be able to 	leve	el I	Descrip	otor
4.Basic 5.Alge Course	 terminologies of graph theory briac system and application Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical 		el I	Descrip	
4.Basic 5.Alge Course CO CO1	 c terminologies of graph theory briac system and application c Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical equation. 	leve II	el I U	Descrip Jnders	otor tanding
4.Basic 5.Alge Course CO	 c terminologies of graph theory briac system and application c Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical equation. Construct various problem based on Sets, relations and 	leve	el I U	Descrip	otor tanding
4.Basic 5.Alge Course CO CO1	 terminologies of graph theory briac system and application Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical equation. 	leve II	el I U	Descrip Jnders	otor tanding
4.Basic 5.Alge Course CO CO1	 terminologies of graph theory briac system and application Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical equation. Construct various problem based on Sets, relations and functions. 	leve II	el I U	Descri <u>r</u> Jnders Creatin	otor tanding
4.Basic 5.Alge Course CO CO CO1 CO2	 c terminologies of graph theory briac system and application c Learning Outcomes: After the completion of the course the student should be able to Construct and minimize different Mathematical Logical equation. Construct various problem based on Sets, relations and functions. Summarize the Graph theory and its applications 	leve II VI	el I U C U	Descrip Jnders Creatin Jnders	otor tanding g

CO-PO Mapping:

СО	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO1	3	3											1	
CO2	3	3	2											2
CO3	3		2											
CO4	3		2											

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussi	ons etc.
MSE: Assessment is based on 50% of course content (Normally first three modules)	
ESE: Assessment is based on 100% course content with60-70% weightage for cour	rse content
(normally last three modules) covered after MSE. Course Contents:	
Unit 1:Mathematical Logic	8Hrs.
Chit I.Mathematical Dogie	01115.
Statements and notation, Connectives, Conditionals and Bi conditionals, well formed formulas, tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal forms, Theory of Inference for statement calculus – validity using truth table, rules of inference, consistency of Premises and indirect method of proof.	
Unit 2:Set Theory	8 Hrs.
Basic concepts of set theory-Notation, Inclusion and Equality of Sets, The power set, Some Operations on Sets, Venn Diagram, Ordered Pairs and n-tuples, Cartesian Products, Permutations, combinations, Discrete Probability	
Unit 3:Relations and Functions	8 Hrs.
Relations and Ordering :-Relations, Properties of Binary Relations in a Set, Relation Matrix and Graph of Relation, Equivalence relations, Partial Ordering and Partial Ordering Set Functions:- Definition and Introduction, , Composition of functions, Inverse Functions, recursive functions	
Unit 4: Algebraic systems	6 Hrs.
Algebraic Systems, Semi Groups, Groups, Monoid, Abelian Groups, subgroups, Isomorphism and Automorphisms, Homomorphism and Normal Subgroups	
Unit 5: Lattices and Boolean algebra	6 Hrs.
Lattice as POSETs , definition , examples and properties, Lattice as algebraic systems, Special lattices, Boolean algebra definition and examples, Boolean functions, representation and minimization of Boolean functions.	
Unit 6: Graph theory Basic concepts of graph theory, Storage representation and manipulation of Graphs, PERT and related techniques.	6 Hrs.
 Textbooks: 1. Discrete Mathematical Structures with Application to Computer Science Tremblay & R. Manohar (MGH International) 2. Elements of Discrete Mathematics- C. L. Liu and D. P. Mohapatra, McGraw-Hill(unit 4) 	

References:

 Discrete Mathematics - Semyour Lipschutz, MarcLipson (MGH), Schaum's outlines
 Discrete Mathematics and its Applications - Kenneth H. Rosen (AT&T Bell Labs) (mhhe.com/rosen)

Unit wise Measurable students Learning Outcomes:

UO1.1 Construct and minimize different Mathematical Logical equation

UO2.1 Construct problem based on Sets

UO 3.1 Solve various problem based on relations and functions

UO 4.1 Analyze various algebraic system and its applications

UO 5.1 Analyze lattices and Boolean algebra system and its applications

UO 6.1Summarize the basic concepts of graph theory

Title of the Course: Applied Mathematics	L	Τ	Р	Credits
Course Code: UITE0302	3	1	-	4

Course Pre-Requisite: Basics of Matrix Algebra, Rules and Formulae of Derivative, Basic Statistical Concepts, Set Theory.

Course Description: This Course contains Linear Algebra, Numerical Methods, Probability Distributions, Statistical Techniques and Fuzzy Sets.

Course Objectives:

- 1. To learn mathematical methodologies and models since mathematics is the foundation of engineering and technology.
- 2. To develop mathematical skills and enhance logical thinking power of students.
- 3. To provide students with skills in linear algebra, probability, statistical techniques and fuzzy sets which would enable them to devise engineering solutions for given situations they may encounter in their profession.
- 4. To increase interest towards the use of mathematics in engineering module.

Course Outcomes: After the completion of the course the student will be Bloom's Cognitive COs Descriptor level able to Understanding **CO1 Explain** fuzzy numbers in dealing with fuzzy equations. Π **Explain** the fuzzy sets and fuzzy logic in dealing with real CO2 Π Understanding problems. **CO3 Solve** algebraic and transcendental equations by using III Applying numerical methods. Make use of method of least squares to fit the curves for Ш **CO4** Applying given bivariate data. Apply the knowledge of the probability distributions to **CO5** III Applying solve problem arising in engineering. **Simplify** the systems of simultaneous linear equations and IV **CO6** Analyzing solve them by using Gauss-Jordan method and LU decomposition method.

CO-PO Mapping:

<u>CO-F</u>											1	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
										0	1	
CO	3	2										1
1												
CO	3	2										1
2												
CO	3	2										1
3												
CO	3	2										1
4												
CO	3	2										1
4												
CO	3	2										1
5												
CO	3	2										1
6												

Two components of In Semester Evalu	uation (ISE), One Mid Semester Examination (MS	SE)
and one End Semester Examination (E	ESE) having 20%, 30% and 50% weights respective	vely.
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE SE 1 and ISE 2 are based on assignm	50	ata
	ent/declared test/quiz/seminar/Group Discussions course content (Normally first three units)	etc.
	burse content with60-70% weightage for course co	ontent
normally last three units) covered after		/iiteiii
Course Contents:		
Unit 1: Linear algebra		5
1. Solutions of simultaneous li	near equations using Gauss-Jordan method.	Hrs
2. Solutions of simultaneous li	near equations using LU decomposition method.	
3. Determination of Eigen Valu		
4. Solution of non-linear simul	•	
Unit 2: Numerical methods		7
1. Solutions of algebraic and tr	anscendental equations methods.	Hrs
2. Bisection method.	1	
3. Newton-Raphson method.		
4. Secant method.		
5. Numerical Integration.		
6. Simpsons 1/3 and 3/8 rules.		
7. Weddle's rule.		
Unit 3: Probability and Distributi	ions	8
1. Introduction of probability.		Hrs
2. Laws of probability.		
3. Conditional probability.		
 Baye's Theorem. Random variables. 		
6. Discrete distributions: Binor	wiel and Deissen	
7. Continuous distributions: No	ormal.	0
Unit 4: Statistical Techniques	ata data Completion apofficient	8 11
2. Fitting of Curves by method	ate data, Correlation coefficient.	Hrs
3. Fitting of Straight lines.	of Least-squares.	
4. Fitting of Parabola.		
5. Fitting of Exponential curve	s.	
6. Tests of significations: Z-tes		
7. Chi-square test for independ	lences of Attributes.	
Unit 5: Introduction to Fuzzy sets	and Fuzzy Logic	7
1. Crisp sets: An overview of f	uzzy set.	Hrs
2. Basic concepts of fuzzy sets		1

3. Basic operations on fuzzy sets.	
4. Properties of fuzzy sets.	
5. Multivalued Logics.	
6. Inference from conditional fuzzy propositions.	
Unit 6: Fuzzy Arithmetic	7
1. Fuzzy numbers.	Hrs
2. Fuzzy cardinality	
3. Operations on Fuzzy numbers.	
4. Fuzzy equations of type $A + X = B$ and $A \cdot X = B$.	
Reference Books:	
1. Higher Engineering Mathematics by Dr. B. S. Grewal.	
2. Linear Algebra by Seymour Lipschutz.	
3. Fuzzy sets and Fuzzy Logic by George J. Klir, Bo Yuan.	
4. Probability and Statistics for Computer science by James L. Johnon.5. Fundamentals of Mathematical Statistics by Gupta and Kapoor.	
5. Fundamentals of Mathematical Statistics by Oupla and Kapoor.	
Unit wise Measurable Learning Outcomes:	
Unit 1: Linear algebra	
UO 1.1 Evaluate solutions of simultaneous linear and non linear equations.	
UO 1.2 Determine of Eigen Value by Iteration method.	
Unit 2: Numerical methods.	
UO 2.1 Solve numerical integration problems.	
UO 2.2 Understand special numerical integral formulae.	
UO 2.3 Solve numerically transcendental and algebraic equations.	
Unit 3: Probability and Distributions.	
UO 3.1 Define the concept of random variable.	
UO 3.2 Solve the function as probability density function.	
UO 3.3 Solve Binomial, Poisson and Normal distribution problems.	
Unit 4: Statistical Techniques	
UO 4.1 Understand correlation Coefficient.	
UO 4.2 Apply fitting of curves for bivariate data.	
UO 4.3 Make use of Testing of Hypothesis.	
Unit 5: Introduction to Fuzzy sets and Fuzzy Logic	
UO 5.1 Understand Basic concept of Fuzzy set theory.	
UO 5.2 Define membership functions.	
UO 5.3 Apply Basic operations on Fuzzy set.	
UO 5.4 Apply of Fuzzy set properties to interpret.	
Unit 6: Fuzzy Arithmetic	
UO 6.1 Apply Fuzzy numbers and Fuzzy cardinality.	
000.1 Apply 1 uZzy numbers and 1 uZzy cardinanty.	
UO 6.2 Apply operate arithmetic operations on fuzzy numbers.	

Title of the Course: Data Communication and Networks	L	Т	Р	Credit
Course Code: UITE0303	4			4

Course Pre-Requisite: Fundamentals of Computers

Course Description:

The course gives you fundamental knowledge of data communication networks including its components. It also covers physical layer, data link layer and network layer in depth knowledge. Real world framing, error correction and detection, flow control techniques are also covered with numerical. Importantly socket programming basics is included to implement some above mentioned techniques.

Course Objectives:

- 1. Explain types of networks, topologies and networks models
- 2. Explain different types of data encoding techniques
- 3. Understand concept of multiplexing and switching
- 4. Understand functions of data link layer
- 5. Understand functions of network layer
- 6. Explain fundamentals of socket interfaces for client-server communication

Course Learning Outcomes:

CO	After the completion of the course the student should	Bloom's	s Cognitive
	be able to	level	Descriptor
C01	Explain different network topologies, multiplexing ,switching data encoding techniques	II	Understanding
CO2	Demonstrate working of different interconnecting devices using simulation tools	II	Understanding
CO3	Solve numerical based upon signal transmission impairment	III	Applying
CO4	Compare different congestion control and routing algorithms	IV	Analyzing
CO5	Design program for framing, flow control and error correction and detection techniques using socket programming	VI	Creating

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2			2											
CO3			1											
CO4						2								
CO5			3										2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE)

and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1: Data Communication Fundamentals Data Communication – Definition, Components, Data representation, Data Flow Networks – Definition, Uses, Topologies, Categories, Internet – History, ISP hierarchy, Protocols & Standards – Protocols, Standards, Standards Organizations, Network Models.	7 Hrs.
Unit 2 : Data Signals and Data Encoding Analog & Digital data, Analog & Digital signals, Transmission Impairments, Data Rate Limits and Performance. Analog-to-Digital conversion –PCM, DM Digital-to-Analog conversion – ASK, FSK, PSK .Analog-to-Analog conversion – AM, FM, PM	12 Hrs.
Unit 3 : Multiplexing & Switching Parallel and serial transmission, Asynchronous and Synchronous transmission, Multiplexing–FDM, WDM, TDM. Switching –Circuit switched, Packet switched, Message switched, Structure of switches	07Hrs.
Unit 4 : Data Link Layer Framing, Error Control, Flow Control, Error detection & correction codes Elementary data link protocols- Simplex, Stop & Wait, Simplex for noisy channel. Sliding window protocols – 1-bit, go back n, selective repeat Channel allocation- static, dynamic Multiple access protocols: Aloha, CSMA, Collision Free Protocols IEEE 802 Standards for LAN and MAN – 802.3, 802.4, 802.5	11 Hrs.
Unit 5 : Network Layer IPv4 Addresses: Introduction, Classful and Classless Addressing, Special Addresses, Network Layer Design Issues Routing Algorithms : Shortest Path, Flooding, Distance Vector, Link State, Broadcast Congestion control algorithms: Principles, Congestion prevention policies, Traffic Shaping, congestion control in datagram subnet, Choke Packet, Load Shedding, Jitter Control	11 Hrs.
Unit 6 : Berkeley Sockets Socket Addresses, Elementary Socket system calls byte ordering and address conversion routines, connectionless iterative server, Connection Oriented concurrent server, TCP and UDP Client server Programs	08 Hrs.

Textbooks:

- 5. Data Communications and Networking –Forouzon ,5thEdition ,TMGH.(1,2,3)
- 6. Computer Networks A. S. Tannenbaum., 3rd Edition, PHI.(4,5)
- 7. Unix Network Programming , W Richard Stevens, PHI.(6)

References:

1) Data Communication & Networks: An Engineering Approach by Irvine, Wiley India Ltd. 2) TCP/IP protocol suite, B A Forouzan, TMGH.

- 2) ICP/IP protocol suite, B A Forouzan, IMGH.
- 3) Computer Networks: Principles ,Technologies and Protocols for Network Design, Wiley

Unit wise Measurable students Learning Outcomes:

Unit 1: Data Communication Fundamentals

- UO 1.1 State and define basic concepts of data communication
- UO 1.2 Identify different types of networks and topologies
- UO 1.3 Explain various concepts about internet

UO 1.4 Enlist different protocols and standards

Unit 2 : Data Signals and Data Encoding

UO 2.1 Define and distinguish analog and digital signals

UO 2.2 Explain different transmission impairments and data encoding

UO 2.3 compare different data encoding techniques

UO 2.4 State and describe various applications of data encoding

Unit 3: Multiplexing & Switching

UO 3.1 List and explain different data transmission modes

UO 3.2 Describe different multiplexing techniques

UO 3.3 Explain the structures of various switching devices

UO 3.4 Explain various types of switched networks

Unit 4 : Data Link Layer

UO 4.1 Implement various DLL functions

UO 4.2 Compare different data link protocols

UO 4.3 Differentiate between channel allocation schemes

Unit 5: Network Layer

UO 5.1 Identify different types of IP addresses

UO 5.2 Compare different routing algorithm

UO 5.3 Differentiate congestion control algorithm

UO 5.4 Explain network layer design issues

Unit 6: Berkeley Sockets

UO 6.1 List different socket system calls

UO 6.2 Explain working of client-server using socket system call

UO 6.3 Design client-server program using different socket calls

Title of the Course: Digital Systems and Microprocessors	L	Τ	P	Credit
Course Code:UITE0304	3	-	-	3
	. 1	•	1	

Course Pre-Requisite: Fundamentals of Electronics and Computers, basic number system

Course Description: This course is aim to Learn various digital system concepts and microprocessors

Course Objectives:

CLO-1: To learn basic digital design techniques.

CLO-2: To design and construction of combinational and sequential circuits.

CLO-3: To study the architecture & working of 8086 microprocessor and peripheral.

CLO-4: To learn the assembly language programming 0f 8086 Microprocessor.

CLO-5: To Study NDP (8087 microprocessor).

Course Learning Outcomes:

CO	After the completion of the course the student should	Bloom	Bloom's Cognitive		
	be able to	level	Descriptor		
CO1	Solve different examples of arithmetic and logical operations on various number systems.	3	Applying		
CO2	Design and demonstrate different sequential and combinational-logic design.	3	Applying		
CO3	Summarize the working of 8086 microprocessor and peripheral.	2	Understanding		
CO4	Design and execute assembly language programs using 8086 instruction set.	3	Applying		
CO5	Distinguish different instructions using timing diagrams.	4	Analyzing		

CO-PO Mapping:

CO	P 01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO	3												1	
1														
CO	2	2	1										2	
2														
CO	2												2	
3														
CO			2		2	1			1					3
4														
CO		2												2
5														

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10

 sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O. Unit 5: 8086 Instruction set and interrupts Structure Addressing modes, Instruction set of 8086 in detail, Instruction Formats, Stacks, Assembly Language Programming, Assembler, Linker, Debugger (Turbo debugger), Directives, Procedures (Near & Far), Macros, Loop constructs, 8086 Programming examples. 8086 Interrupt Structure, Interrupt Vector Table (IVT), ISR, Hardware and software Interrupts 	6 Hrs. 10 Hrs. 6 Hrs.
 Sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O. Unit 5: 8086 Instruction set and interrupts Structure Addressing modes, Instruction set of 8086 in detail, Instruction Formats, Stacks, Assembly Language Programming, Assembler, Linker, Debugger (Turbo debugger), Directives, Procedures (Near & Far), Macros, Loop constructs, 8086 	
 sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O. Unit 5: 8086 Instruction set and interrupts Structure Addressing modes, Instruction set of 8086 in detail, Instruction Formats, Stacks, Assembly Language Programming, Assembler, Linker, Debugger (Turbo 	
 sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O. Unit 5: 8086 Instruction set and interrupts Structure Addressing modes, Instruction set of 8086 in detail, Instruction Formats, Stacks, 	
sequential circuitsFlip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490)Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O.6Unit 5: 8086 Instruction set and interrupts Structure14	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address mapping and decoding, I/O: memory mapped I/O & I/O Mapped I/O.	
 Sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, logical to physical address translation, Read write cycle timing diagrams, Address 	6 Hrs.
 sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture and Pin diagram of 8086, Programmers model of 8086 (Registers), Segmentation, 	6 Hrs.
 sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490) Unit 4: Introduction to 8086 Evolution of microprocessors, Introduction to 16 bit microprocessor, Architecture 	6 Hrs.
sequential circuitsFlip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register.Counters:Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490)Unit 4: Introduction to 80866	6 Hrs.
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD Counter, Johnson Counter, Modulus of the counter (IC 7490)	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register. Counters: Asynchronous counter. Synchronous counter, ring counters, BCD	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters. Registers: Buffer register; shift register.	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip Flop. Application of Flip-ops: Bounce Elimination Switch, registers, counters.	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth Tables and excitation tables, Conversion from one type to another type of Flip	
sequential circuits Flip-flop: SR, JK, D, T; Preset & Clear, Master and Slave Flip Flops their truth	
sequential circuits	
1	
Introduction: Sequential Circuits. Difference between combinational circuits and	
1 0	7 Hrs.
using DEMUX, Decoder. (IC 74138). BCD to 7 segment decoder	
De-multiplexers (DEMUX): Working of DEMUX, Implementation of expression	
MUX (IC 74153, 74151).	
Multiplexers (MUX): Working of MUX, Implementation of expression using	
using and subtract using 7483	
Circuits: Half- Adder, Full Adder, Half Subtract or, Full Sub tractor, BCD adder	
Codes: BCD, Excess-3, Gray code , Binary Code , BCD addition & subtraction.	
	5 Hrs.
Conditions.	
Reduction techniques: K-Maps up to 4 variables, prime Implicant, Don't care	
expansion of Boolean expression (standard SOP & POS).	
Simplification of logical functions, Minimization of SOP and POS forms,	
Logic minimization: Representation of truth-table, SOP form, POS form,	
definition of Boolean algebra, Basic theorems and properties of Boolean algebra.	
Boolean algebra. Idealized logic gates and symbols. DeMorgan's rules Axiomatic	
Boolean algebra: Truth tables and	
Introduction to number system and logic gates.	
	U 1115.
Course Contents: Unit 1: Logic Design Minimization Techniques 6	6 Hrs.

Minimum & Maximum mode of 8086: Multifunction pins of 8086, 8088 bus controller, IOB mode of 8288, Minimum & Maximum mode con_guration diagram 8087(NDP) - Features, Block Diagram, Data Types, Control & status registers, typical Instruction Set & Programming

Textbooks:

 Fundamental of Digital Circuits {A. Anand Kumar, 2nd Edition, PHI Private Limited.
 Douglas Hall, \Microprocessors & Interfacing", McGraw Hill, Revised 2nd Edition, 2006 ISBN 0-07-100462-9

3. John Uffenbeck," The 8086/88 Family: Design, Programming & Interfacing", PHI,

References:

1. R. Jain, \Modern Digital Electronics", eighth edition, Tata McGraw-Hill, 2003, ISBN 0 { 07 { 049492 { 4

2. A. Ray, K. Bhurchandi, "Advanced Microprocessors and peripherals: Arch, Programming & Interfacing", Tata McGraw Hill,2004 ISBN 0-07-463841-6

3. Liu, Gibson, \Microcomputer Systems: The 8086/88 Family", 2nd Edition, PHI,2005

Unit wise Measurable students Learning Outcomes:

Unit 1:Logic Design Minimization Techniques

UO1.1: Acquire basic knowledge of logic gates which are used to design the circuit

UO1.2: Solve the Boolean expression to minimize the logic gate in designing the circuit

Unit 2: Combinational Logic

UO2.1: Describe various combinational circuits and their use

UO2.2: Design any combinational circuit for given equation and truth table

Unit 3: Sequential Logic

UO3.1: differentiate combinational and sequential circuits

UO3.2: List and explain working of various flip-flop

UO3.3: Construct different sequential circuits

Unit 4: Introduction to 8086

UO4.1: Describe the components of 8086 microprocessor

UO4.2: Explain 8086 microprocessor architecture

Unit 5: 8086 Instruction set and interrupt Structure

UO5.1: Apply different instructions for assembly language programming

UO5.2: Execution of various assembly language programs

Unit 6:Minimum & Maximum mode of 8086 and Introduction to 8087

UO6.1: Explain Minimum & Maximum mode of 8086

UO6.2: Describe the components of 8087 microprocessor

Title of the Course: Data Structure	L	Т	Р	Credit		
Course Code:UITE0305	3	-	-	3		
Course Pre-Requisite: Fundamentals of Programming Language C						

Course Description: This course is aim to Learn various data structures that are used to store and organize data.

Course Objectives:

1. To understand the different ways of data representation.

2. To define high level of abstraction needed for data structure and algorithm.

3. To study the representation, implementation and applications of linear and non linear data structures.

4. Compute the complexity of various algorithms.

5. To develop application using data structure algorithms.

Course Learning Outcomes:

CO	After the completion of the course the student should	Bloom's Cognitive			
	be able to	level	Descriptor		
CO1	Explain the basic concepts of Data Structures.	2	Understanding		
CO2	Apply various data structures to solve different computing problems.	3	Applying		
CO3	Choose appropriate data Structure that efficiently model the information in a problem.	5	Evaluating		
CO4	Analyze searching and sorting algorithms to find their complexity.	4	Analyzing		

CO-PO Mapping:

CO	P 01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO 1	3				1								1	
CO 2		2	2	2		2							1	3
CO 3		2		2		2							1	2
CO 4		2	2	2		1							2	1

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30

ISE 2 10	0	
ESE 5		
ISE 1 and ISE 2 are based on assignment/declared MSE: Assessment is based on 50% of course conte ESE: Assessment is based on 100% course conte (normally last three modules) covered after MSE.	tent (Normally first three modules) ant with 60-70% weightage for cou	
Course Contents:		
Unit 1: Introduction to Data structures		04 Hrs.
Concept of data, Data object, Data structure, Abs of Primitive and non primitive, linear and Non efficiency, File structure		
Unit 2:Linear Data Structures Linked Organiz	zation	08 Hrs.
Limitations of static memory allocation. Dyn Concept of linked organization, Singly linked I linked list. Operations like insertion, deletion, these data structures,Garbage collection and comp Applications: Josephus Problem, Representation polynomial (implementation not expected)	list, Doubly linked list, Circular traversal & other operations on paction	
Unit 3: Linear Data Structure : Stacks and Qu	eues	06 Hrs.
Stack: Concept of stack as ADT, Representatiusing sequential & linked organization. Applications: Simulating recursion using explications: infix to postfix ,Evaluation of postfiparsing : well-formed parenthesis checking	cit stack, Arithmetic expression	
Queue: Concept of queue as ADT, Representation queue & circular queue using sequential & line queue, Multi-queue and Priority queue. Applications : Job scheduling, Queue st (Implementation not expected)		
Unit 4: Non Linear Data Structure : Trees		08 Hrs.
Basic Concept, Terminology and user represe Algorithms for Binary Tree Traversal, Binary se BST, AVL Trees, Heap Tree, B Tree, B+ Trees Applications: Evaluating the expression, infix conversion using tree	earch trees (BST), algorithms on	
Unit 5:Non Linear Data Structure : Graph		07 Hrs.
Concepts and terminology of graph, Represent matrix and adjacency list, Elementary Graph Breath first search, Spanning Trees		

Applications: Minimum spanning Tree: Prim's and Kruskal's Algorithm, Shortest Path: Single- Source (Dijkstra's Algorithm), All-Pairs Shortest Path (Floyd's Warshall Algorithm)	
Unit 6:Searching & Sorting Techniques and Hashing	09 Hrs.
Need of sorting and searching, sorting order & stability in sorting. Sorting Techniques: Concept of Internal & External sorting, Algorithms for Bubble sort, Selection sort, Insertion sort, Radix sort, Heap sort, Quick sort and Merge sort. Analysis of each sorting technique for best, worst and average case, Searching Techniques: Algorithms for Sequential search, Binary search, analysis of each searching technique for best, worst and average case. Hashing Techniques, Types of Hash Functions, Collision resolution techniques, open and closed hashing	

Textbooks:

1. R. Gilberg, B. Forouzan, "Data Structures: A pseudo code approach with C", Cenage Learning, ISBN 9788131503140(Refer 1,3,4,5).

2.Seymour Lipschutz,G.A.V.Pai ,"Data Structure",Tata McGraw Hill,ISBN-13:978-0-07-060168-0.(Refer Chapter:6)

3.Rohit Khurana,"Data Structures Using C",Vikas publishing House Pvt.ltd,ISBN:978-93259-7565-1.(Refer Chapter:2 and application of DS)

References:

1.E.Horowitz, S.Sahani, S.Anderson-Freed "Fundamentals of Data Structures in C", Universities Press ,2008 ,ISBN 10:8173716056.

Unit wise Measurable students Learning Outcomes:

Unit 1: Introduction to Data structures

UO1.1: Define the importance of structure and abstract data type, and their basic usability in different applications through different programming languages

Unit 2: Linear Data Structures Linked Organization

UO2.1: Explain the linked implementation, and its uses both in linear and non-linear data structure.

UO2.2: Implement linked list data structure to solve various problems.

Unit 3: Linear Data Structure : Stacks and Queues

UO3.1: Define various data structure such as stacks, queues.

UO3.2: Solve problems using data structures such as stacks, queues.

Unit 4: Non Linear Data Structure : Trees

UO4.1: define different tree traversal techniques.

UO4.2: Apply tree data structure to solve various problems.

Unit 5: Non Linear Data Structure : Graph

UO5.1: Implement different graph traversal techniques.

UO5.2: Solve problems using graphs such as minimum spanning trees, shortest path algorithm.

Unit 6:Searching and Sorting Techniques

UO6.1: Implement various kinds of searching and sorting techniques

UO6.2: Assess how the choice of data structures and algorithm design methods impacts the performance of programs.

UO6.3: Solves problems using hashing techniques

Course Name: Data Structures

Course Code: UITE0305

Problem Statements:

DSPBLPB01: Problem Statement

There is a car agency that contains different kinds of cars. They may have more than one car from each kind. They want an application to maintain the record of customer and sold car. Each customer gives an order to buy a car. Car agency search for availability of car and sold the car on first come first serve basis. Also, car agency gives the car on rent. Rent of car will be calculated on distance covered between source and destination. Car agency want to calculate minimum rent and give the suggestion of route. How you are going to develop an application to solve all the requirement of car agency?

Sr. No.	Activity	Timeline
1	PBL awareness in class	1 st week
2	Announcement of problem/s for PBL	2 nd week
3	Team formation	3 rd week
4	Project ISE I:Synopsis presentation	5 th week
5	Completion of corrections/improvements in synopsis	6 th week
6	Project ISE II: Project Progress Presentation with Model/case study	10 th week
7	Completion of correction/improvements in Evaluation II	11 th week
8	End Semester Evaluation of Project	13 th week
9	Determining future scope for improvement	14 th week

2. Activities with timeline:

3. Assessment Scheme:

- ISE-I
- ISE-II
- Project ESE

4. Evaluation Scheme:

- **Project ISE I :** Synopsis presentation for 5 marks (evaluation with rubrics)
- Project ISE II: Project Progress Presentation with Model/case study for 5 marks (evaluation with rubric)
- End Semester Evaluation of Project: Multimedia presentation and demonstration of working models for 15 marks out of 25 of course lab ISE (evaluation with rubrics)

Title of the Course: Data Communication and Networks Lab	L	Т	Р	Credit
Course Code: UITE0331			2	1

Course Pre-Requisite: Data Communication and Networks Concepts, Computer Programming

Course Description:

The course gives you fundamental knowledge of data communication networks including its components. It also covers physical layer, data link layer and network layer in depth knowledge. Real world framing, error correction and detection, flow control techniques are also covered with numerical. Importantly socket programming basics is included to implement some above mentioned techniques.

Course Objectives:

- 1. Explain types of networks, topologies and networks models
- 2. Explain different types of data encoding techniques
- 3. Understand concept of multiplexing and switching
- 4. Understand functions of data link layer
- 5. Understand functions of network layer
- 6. Explain fundamentals of socket interfaces for client-server communication

Course Learning Outcomes:

СО	After the completion of the course the student should be	Bloom's Cognitive				
	able to	level	Descriptor			
CO1	Explain different network topologies, multiplexing ,switching	II	Understanding			
	data encoding techniques					
CO2	Demonstrate working of different interconnecting devices	II	Understanding			
	using simulation tools					
CO3	Solve numerical based upon signal transmission impairment	III	Applying			
CO4	Compare different congestion control and routing algorithms	IV	Analyzing			
CO5	Design program for framing, flow control and error correction	VI	Creating			
	and detection techniques using socket programming					

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PSO 2
CO1	2	4	5	-	5	U	,	0		10	11	14		4
CO2			2											
CO3			1											
CO4						2								
CO5			3										2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks	
ISE	50	
ESE	50	
ESE: Assessment is based on pract	test/quiz/seminar/Group Discussions etc.	
Course Contents:		
Course Contents.		
Experiment No. 1 : Demonstration of	of Networks and Components	4 Hrs
Aim : Demonstration of Networks and	1 Components	
Objective : To study and demonstrate the differen	t interconnecting devices of LAN and WAN	
Steps to Perform Experiment :		
interconnecting devices and componen 2. Design the Campus network using (Cisco Packet Tracer erconnecting devices in same network using Cisco s and components but not limited to	
Outcome : After this experiment student will able each interconnecting devices and comp Experiment No. 2 : Connectivity To	•	2 Hrs
Aim: Study of Connectivity Tools	015	21115
Objective : Demonstrate the use of di	fferent connectivity tools	
Tools:		
time to set up interfaces as necess debugging or when system tuning is the status of the currently active inter displays the status of the given interf the status of all interfaces, even the interface. if config eth0- display the current statu if config eth0 down- shutdown the inter are required) if config eth0 up- up the interface me required) if config 172.25.3.5 - set the given ip a	vailable interfaces on the computer erface mentioned in command (super user privileges mentioned in command (super user privileges are	
	cache in various ways. The primary options are d manually setting up one. For debugging purposes,	

the arp program also allows a complete dump of the ARP cache.	7
arp -a -show the entries of specified host	
arp -s ip addr mac address- used to add corresponding entry in cache	
arp -d ip addr - used to delete specific entry from the cache	
c) route	
route manipulates the kernel's IP routing tables. Its primary use is to set up static routes to	
specific hosts or networks via an interface after it has been configured with the	
ifconfig(8) program. When the add or del options are used, route modifies the routing	
tables. Without these options, route displays the current contents of the routing tables.	
route - display kernel's IP routing tables	
d) traceroute	
traceroute tracks the route packets taken from an IP network on their way to a given	
host. It utilizes the IP protocol's time to live (TTL) field and attempts to elicit	
an ICMP TIME_EXCEEDED response from each gateway along the path to the host.	
traceroute 210.212.172.190 - displays the response from each gateway.	
e) nmap	
Nmap ("Network Mapper") is an open source tool for network exploration and security	
auditing. It was designed to rapidly scan large networks, although it works fine against	
single hosts. Nmap uses raw IP packets in novel ways to determine what hosts are	
available on the network, what services (application name and version) those hosts are	
offering, what operating systems (and OS versions) they are running, what type of packet	
filters/firewalls are in use, and dozens of other characteristics. While Nmap is commonly	
used for security audits, many systems and network administrators find it useful for	
· · · ·	
routine tasks such as network inventory, managing service upgrade schedules, and	
monitoring host or service uptime.	
nmap 172.25.3.100 - scanning the given system	
nmap 172.25.3.100 172.27.100.2 - scanning two systems	
f) netstat	
Print network connections, routing tables, interface statistics, masquerade connections,	
and multicast memberships. Netstat prints information about the Linux networking	
subsystem.	
netstat- display network subsystem information	
g) finger	
The finger displays information about the system users	
finger -s - Finger displays the user's login name, real name, terminal name and write	
status idle time, login time, office location and office phone number.	
Outcome: Student will be able to execute command and show the outputs according to	
different options	
Experiment No. 3 : Socket Interfaces for Client Server Models	4 Hrs
Aim: Study of Socket Interfaces for Client Server Models	4 111 5
Ann. Study of Socket interfaces for cheft Server Wodels	
Objective: Demonstrate use of different socket interfaces	
Suprement Demonstrate use of anterent socket interfaces	
Socket System Calls:	
What is socket programming?	
Socket programming is a way of connecting two nodes on a network to communicate with	
each other. One socket (node) listens on a particular port at an IP, while other socket	
reaches out to the other to form a connection. Server forms the listener socket while client	
reaches out to the server.	
Stages for server	
L SLAPES FOR SERVER	1

Socket creation:

int sockfd = socket(domain, type, protocol)

sockfd: socket descriptor, an integer (like a file-handle)

domain: integer, communication domain e.g., AF_INET (IPv4 protocol), AF_INET6 (IPv6 protocol)

type: communication type

SOCK_STREAM: TCP(reliable, connection oriented)

SOCK_DGRAM: UDP(unreliable, connectionless)

protocol: Protocol value for Internet Protocol(IP), which is 0. This is the same number which appears on protocol field in the IP header of a packet.(man protocols for more details)

Setsockopt:

int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);

This helps in manipulating options for the socket referred by the file descriptor sockfd. This is completely optional, but it helps in reuse of address and port. Prevents error such as: "address already in use".

Bind:

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

After creation of the socket, bind function binds the socket to the address and port number specified in addr(custom data structure). In the example code, we bind the server to the localhost, hence we use INADDR_ANY to specify the IP address.

Listen:

int listen(int sockfd, int backlog);

It puts the server socket in a passive mode, where it waits for the client to approach the server to make a connection. The backlog, defines the maximum length to which the queue of pending connections for sockfd may grow. If a connection request arrives when the queue is full, the client may receive an error with an indication of ECONNREFUSED.

Accept:

int new_socket= accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen); It extracts the first connection request on the queue of pending connections for the listening socket, sockfd, creates a new connected socket, and returns a new file descriptor referring to that socket. At this point, connection is established between client and server, and they are ready to transfer data.

Stages for Client

- Socket connection: Exactly same as that of server's socket creation
- Connect:

• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen); The connect() system call connects the socket referred to by the file descriptor sockfd to the address specified by addr. Server's address and port is specified in addr.

Outcome: Student will be able to use socket system call for implementing client-server model

Experiment No. 4 : Network Protocol Analyzer	2Hrs
Aim: To study Network Protocol Analyzer	
Objective: Demonstrate use of NPA Wire Shark for analysis of network traffic	
Network Protocol Analyzer i.e. Wire shark	
https://www.lifewire.com/wireshark-tutorial-4143298	

Outcome: Student will be able to use network protocol analyzer for monitoring network traffic

Experiment No. 5 : Framing Methods	4 Hrs
Aim: Study of Framing Methods	
Objective: Design and implement character count and bit stuffing technique	
Character Count:	
Student is required to write a sender program where sender will take actual data to be	
transmitted as input from user and store it in buffer.	
- Now character count is added at the beginning of every frame. (You can also display the codeword)	
- Write a receiver program where it accepts the codeword sent from sender end. (You can	
also display the accepted codeword from sender)	
- Now check count and bits from the codeword and retrieve the actual data. Now display the actual data	
Bit Stuffing :	
Student is required to write a sender program where sender will take actual data to be transmitted as input from user and store it in buffer.	
- Now redundant 0 bit has to be stuffed after every 5 consecutive 1's in the actual data and a codeword has to be created which has to be sent to receiver. (You can also display the	
codeword) - Write a receiver program where it accepts the codeword sent from sender end. (You can also display the accepted codeword from sender)	
- Now destuff (remove) the redundant 0 bits from the codeword and retrive the actual data. Now display the actual data.	
Outcome: Student will be able to implement and demonstrate working of the same.	2.11
Experiment No. 6 : Error Correction and Detection	2 Hrs
Aim: To study Error Correction and Detection techniques Objective: Design and implement Hamming Code technique	
Outcome: Student will be able to implement and demonstrate working of the Hamming	
code	
Experiment No. 7 : Sliding Window	4 Hrs
Aim: To study Sliding Window Technique	
Objective: Design and implement Stop and Wait Protocol	
Design and implement GO BACK N Protocol	
Design and implement Selective Repeat Protocol	
Outcome: Student will be able to implement and demonstrate working of the Sliding	
Window techniques	
Experiment No. 8 : Routing Algorithm	2 Hrs
Aim: To study Routing Algorithm	
Objective: Design and implement STP routing protocol	
Outcome: Student will be able to implement and demonstrate working of the Sliding	
Window techniques	
Textbooks:	I
1. Data and Computer Communications – Williams Stallings ,5thEdition ,PHI.(1,2,3)	
2. Computer Networks – A. S. Tenebaum., 3rd Edition, PHI. (4,5)	
3. Unix Network Programming, W Richard Stevens, PHI.(6)	
References:	
1) Data Communication & Natural A. Enderstanding A. 11 T. Will T. 1 T. 1	
 Data Communication & Networks: An Engineering Approach by Irvine, Wiley India Ltd TCP/IP protocol suite, B A Forouzan, TMGH. 	•

3) Computer Networks: Principles ,Technologies and Protocols for Network Design, Wiley
Unit wise Measurable students Learning Outcomes: Unit 1: Data Communication Fundamentals UO 1.1 State and define basic concepts of data communication
UO 1.2 Identify different types of networks and topologies
UO 1.3 Explain various concepts about internet
UO 1.4 Enlist different protocols and standards
Unit 2 : Data Signals and Data Encoding UO 2.1 Define and distinguish analog and digital signals
UO 2.2 Explain different transmission impairments and data encoding
UO 2.3 compare different data encoding techniques
UO 2.4 State and describe various applications of data encoding
Unit 3: Multiplexing & Switching UO 3.1 List and explain different data transmission modes
UO 3.2 Describe different multiplexing techniques
UO 3.3 Explain the structures of various switching devices
UO 3.4 Explain various types of switched networks
Unit 4 : Data Link Layer UO 4.1 Implement various DLL functions
UO 4.2 Compare different data link protocols
UO 4.3 Differentiate between channel allocation schemes
Unit 5: Network Layer UO 5.1 Identify different types of IP addresses
UO 5.2 Compare different routing algorithm
UO 5.3 Differentiate congestion control algorithm
UO 5.4 Explain network layer design issues
Unit 6: Berkeley Sockets
UO 6.1 List different socket system calls
UO 6.2 Explain working of client-server using socket system call
UO 6.3 Design client-server program using different socket calls

Title of					stems	and l	Micro	proces	ssors l	Lab	L	Т	P 2		redit
<u>Course</u> Course					mantal	a of El	lastron	ing on	d Com	mutan	- Inct	-	2	$\frac{1}{1}$	0006
Course		-		rundai	nentai	SOLE	lectron	iics an	u Coll	iputers	s, msu	ructio	JII SE		8080
DSM L		-		dy and	dasia	n oom	hinati	onal ar	nd soar	uontio	loirou	ite u	aina	logi	a goto
and wri				-	-			Jiai ai	liu seq	uentia		ints u	sing	logi	gales
	01	0		ng 000	50 mst	ruction	115								
1. To le	•			lesion	techni	anes									
2. To le							ming ()f 8086	6 Micr	oproce	essor				
3. To u												circu	iits.		
Course			_							- 1					
CO	Afte	r the	comnl	etion	of the	cours	e the s	studer	nt shou	ıld he	Blo	om's		gniti	Ve
co	able		compi	CHOI	or the	cours		Juuch	11 51101	nu oc	leve			ripto	
CO1		ign any	v circu	its usi	ng lag	ic gate	25				2				ding
		-				-		ential	circui	ts	3			ying	lanig
CO2									s using		4		Creat		
005		uction				ungua	or pro	Sum	, abilig	0000			_1 UU		
	mou	4011011										I			
CO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	P)	PS	PSC
	1	2	3	4	5	6	7	8	9	10	11	12		01	2
CO	3		1											2	
1															
CO			2												1
2															
CO		2		1		2									3
3															
Assessi															
Teache															
One co	-							and on	e End	Semes	ster Ex	xami	natio	on (E	SE)
having			0% we	eights	respec	tively.	1								
Assess	sment							larks							
ISE							50								
ESE	1	1		1 0	1		50			1/1	D			•	
ISE are Discuss		-		-	ormed/	Quiz	/ IVI1n1	-Proje	ct assig	gned/ I	Preser	itatic	n/ C	roup	1
Discuss							:								
			s dase		rai exa	immai	1011								
Course			. CTT		E AT I			ATE	2					21	Inc
Experi Aim an										Varaal	nata I	$\mathbf{C}_{\mathbf{c}}$	nd	21	Hrs.
verify i		•		1 aiiiii	anze	Uasic I	iogic g	aics a	na uill	veisai	gate I	U 3, 2	uiu		
Outcor				of trut	h tahla	of all	logic	oatee							
Theore							-	-	Iorkin	o of di	fferen	t 100	ic		
gates ai		-	-			snar I	amei	1XIL, VV	UIKIII	5 01 01	1101011	i 10g	iC		
-			-												
-				er kit											
Experi 1. Plac				er kit.											

 Wire the circuit diagram Connect the inputs to the input switches provided in the trainer kit. Connect the outputs to the terminals of output LEDs. 	
4. Connect the outputs to the terminals of output LEDs.	
\mathcal{F} Common VCC and CND to \mathcal{F}	
5. Connect VCC and GND to respective pins of trainer kit	
6. Apply various combinations of inputs according to the truth table and	
observe condition of LEDs	
Results and Discussions: Familiarize the digital IC trainer kit & logic gate IC	
packages and verified the truth tables of logic gates	
Conclusion:	
Experiment No. 2: STUDY OF COMBINATIONAL CIRCUITS	2 Hrs.
Aim and Objectives: To verify De-Morgan's theorem for two variables	
Outcomes: De-Morgan's theorem verified	
Theoretical Background:	
De-Morgan's theorem Statement, IC'c required.	
Experimentation:	
1. Place the ICs on trainer kit.	
2. Wire the designed circuit diagram	
3. Connect the inputs to the input switches provided in the trainer kit.	
4. Connect the outputs to the terminals of output LEDs.	
5. Connect VCC and GND to respective pins of trainer kit	
6. Apply various combinations of inputs according to the truth table and Observe	
the output.	
Results and Discussions: De-Morgan's theorems of Boolean algebra were	
verified.	
Conclusion:	
Experiment No. 3: HALF ADDER AND HALF SUBTRACTOR	2 Hrs.
Aim and Objectives: To design and set up half adder and half subtractor using	
a. EXOR gates and AND gates	
b.NAND gates	
Outcomes: Half adder and the half subtractor circuits are set up using logic gates	
and verified the result	
Theoretical Background:	
Circuit diagram and truth table of half adder and subtractor, IC's required.	
Experimentation:	
1. Place the ICs on trainer kit.	
2. Wire the circuit diagram	
 Wire the circuit diagram Connect the inputs to the input switches provided in the trainer kit. 	
3. Connect the inputs to the input switches provided in the trainer kit.	
3. Connect the inputs to the input switches provided in the trainer kit.4. Connect the outputs to the terminals of output LEDs.	
 Connect the inputs to the input switches provided in the trainer kit. Connect the outputs to the terminals of output LEDs. Connect VCC and GND to respective pins of trainer kit 	
 Connect the inputs to the input switches provided in the trainer kit. Connect the outputs to the terminals of output LEDs. Connect VCC and GND to respective pins of trainer kit Apply various combinations of inputs according to the truth table and 	
 Connect the inputs to the input switches provided in the trainer kit. Connect the outputs to the terminals of output LEDs. Connect VCC and GND to respective pins of trainer kit Apply various combinations of inputs according to the truth table and observe the outputs. Results and Discussions: Half adder and the half subtractor circuits are set up 	
 Connect the inputs to the input switches provided in the trainer kit. Connect the outputs to the terminals of output LEDs. Connect VCC and GND to respective pins of trainer kit Apply various combinations of inputs according to the truth table and observe the outputs. 	
 3. Connect the inputs to the input switches provided in the trainer kit. 4. Connect the outputs to the terminals of output LEDs. 5. Connect VCC and GND to respective pins of trainer kit 6. Apply various combinations of inputs according to the truth table and observe the outputs. Results and Discussions: Half adder and the half subtractor circuits are set up using logic gates and verified the result Conclusion: 	2 Hrs.
 3. Connect the inputs to the input switches provided in the trainer kit. 4. Connect the outputs to the terminals of output LEDs. 5. Connect VCC and GND to respective pins of trainer kit 6. Apply various combinations of inputs according to the truth table and observe the outputs. Results and Discussions: Half adder and the half subtractor circuits are set up using logic gates and verified the result Conclusion: Experiment No. 4: BCD to EXCESS -3 CODE CONVERTER 	2 Hrs.
 3. Connect the inputs to the input switches provided in the trainer kit. 4. Connect the outputs to the terminals of output LEDs. 5. Connect VCC and GND to respective pins of trainer kit 6. Apply various combinations of inputs according to the truth table and observe the outputs. Results and Discussions: Half adder and the half subtractor circuits are set up using logic gates and verified the result Conclusion: Experiment No. 4: BCD to EXCESS -3 CODE CONVERTER Aim and Objectives: To design and set up the circuit of BCD to Excess-3 	2 Hrs.
 3. Connect the inputs to the input switches provided in the trainer kit. 4. Connect the outputs to the terminals of output LEDs. 5. Connect VCC and GND to respective pins of trainer kit 6. Apply various combinations of inputs according to the truth table and observe the outputs. Results and Discussions: Half adder and the half subtractor circuits are set up using logic gates and verified the result Conclusion: Experiment No. 4: BCD to EXCESS -3 CODE CONVERTER 	2 Hrs.

Theoretical Background: knowledge of BCD and Excess-3 code.	
Experimentation:	
1. Place the ICs on trainer kit.	
2. Wire the circuit diagram	
3. Connect the inputs to the input switches provided in the trainer kit.	
4. Connect the outputs to the terminals of output LEDs.	
5. Connect VCC and GND to respective pins of trainer kit	
6. Apply various combinations of inputs according to the truth table and	
observe the outputs.	
Results and Discussions: the circuit of BCD to Excess-3 converter has set up and	
verified the result	
Conclusion:	
Experiment No. 5: FLIP FLOPS USING GATES AND FAMILIARIZATION	2 Hrs.
OF ICs	2 111 5.
Aim and Objectives: To Setup the following flip flops using gates and verify the	
truth table also familiarize the flip flop ICs	
1.GatedRS flip flop	
2.JK flip flop	
Outcomes: The flip flops, Gated RS flip flop , JK flip flop and were set up using	
NAND gates and verified	
Theoretical Background:	
Circuit diagram and truth table of RS flip flop, JK flip flop, IC's required.	
Experimentation: 1. Place the ICs on trainer kit.	
2. Wire the circuit diagram	
3. Connect the inputs to the input switches provided in the trainer kit.	
4. Connect the outputs to the terminals of output LEDs.	
5. Connect VCC and GND to respective pins of trainer kit	
6. Apply various combinations of inputs according to the truth table and	
observe the outputs.	
Results and Discussions: The flip flops, Gated RS flip flop, JK flip flop and	
were set up using NAND gates and verified. ICs 7476 is familiarized	
Conclusion:	
Experiment No. 6: ASYNCHRONOUS COUNTERS	2 Hrs.
Aim and Objectives: To set up and study the working of asynchronous up	
counter and down counter.	
Outcomes: Asynchronous up counter and down counter is designed and truth	
table is verified.	
Theoretical Background:	
Circuit diagram and truth table of Asynchronous up and down counter, IC's	
Required.	
Experimentation: 1. Place the ICs on trainer kit.	
2. Wire the circuit diagram	
3. Connect the inputs to the input switches provided in the trainer kit.	
4. Connect the outputs to the terminals of output LEDs.	
5. Connect VCC and GND to respective pins of trainer kit	
6. Apply various combinations of inputs according to the truth table and	
Observe the outputs.	
Results and Discussions : Asynchronous up counter and down counter is designed	
and truth table is verified.	
Conclusion:	

6. Write assembly language program using instruction set.

Title of the Course: Data Structures Lab	L	Т	Р	Cred	lit
Course Code:UITE0333	-	-	4	2	
Course Pre-Requisite: Fundamentals of Programming Langu	age (C, and	d var	ious o	data
structures					

Course Description:

The objective of this lab is to teach students various data structures and to explain them algorithms for performing various operations on these data structures. Students will gain practical knowledge by writing and executing programs in C using various data structures such as arrays, linked lists, stacks, queues, trees, graphs, hash tables and search trees.

Course Objectives:

1. To study the representation, implementation and applications of linear and non linear data structures.

2. Compute the complexity of various algorithms.

3. To develop application using data structure algorithms.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloon	n's Cognitive
	able to	level	Descriptor
CO1	Demonstrate the different data structures.	2	Understanding
CO2	Identify and make use of the appropriate data structure and	3	Applying
	algorithm to solve real world applications.		
CO3	Compare different implementations of data structures and	4	Analyzing
	recognize the advantages and disadvantages of them.		
CO4	Develop the real time application using data structure.	5	Create

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO 1	2												1	
CO 2		3	2	2	1									3
CO 3		2		3									2	
CO 4	1	2	3	2	1	1			3	2	2			

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50
ISE are based on practical performed/ Quiz	z/ Mini-Project assigned/ Presentation/ Group

Discussion/ Internal oral etc.

Course Contents:	
Experiment No. 1: Basic C programs	06Hrs.
Aim and Objectives:	
I)Write a program to	
find factorial of a given no.	
2. determine the sum and average of a series. Etc	
II) Write a program to perform following sparse matrix operations	
3. Addition 2. subtraction 3. Multiplication 4. Transpose	
III)Write a program to perform following operation on file:	
1.Read 2.Write 3.Update	
Dutcomes:	
Theoretical Background: basics of C language	
Experimentation: Write and execute the program using gcc. Results and Discussions: All programs are performed.	
Conclusion:	
Experiment No. 2: Linked List	12 Hrs.
Aim and Objectives: Write a program to create singly/circular/doubly linked list	
and perform following operations on them.	
. Insert 2. Delete 3. Search 4. Traverse	
Dutcomes:	
Theoretical Background: Basics of linked list and algorithms of all operations	
on linked list	
Experimentation: Write and execute the program using gcc.	
1.Create a node using structure	
2.Dynamically allocate memory to node	
3.Create and add nodes to linked list	
4. Delete the nodes from linked list	
5. Display all the nodes of linked list	
Results and Discussions: All programs are performed.	
Conclusion:	
Experiment No. 3: Stack	06 Hrs.
Aim and Objectives:	
. Write a program to create stack and perform following operations on stack	
using array and linked list.	
. Push 2. Pop 3. Traverse	
2. To convert a given infix expression into its postfix Equivalent, Implement the	
stack using an array.	
Dutcomes:	
Theoretical Background: Basics of stack and algorithms of all operations on	
tack	
Experimentation: Write and execute the program using gcc.	
1. Create Stack	
 Create Stack Perform all the operation of stack using arrays/linked list Display the content of stack at last. 	

1. Create a stack	
2. Read an infix expression	
3. convert infix expression into postfix expression	
Results and Discussions: All programs are performed.	
Conclusion:	
Experiment No. 4:Queue	06 Hrs.
Aim and Objectives: Write a program to create queue and perform following	00 111 5.
operations on queue using array and linked list.	
1. Enqueue 2. Dequeue 3. Traverse	
Outcomes:	
Theoretical Background: Basics of queue and algorithms of all operations on	
queue Experimentation: Write and execute the program using gcc.	
 Create a Queue Perform all the operation of queue using arrays/linked list 	
3. Display the content of queue at last.	
Results and Discussions: All programs are performed. Conclusion:	
Conclusion:	
Experiment No. 5: Tree	06 Hrs.
Aim and Objectives: Write a program to create BST of integers/ characters and	00 1115.
perform following operations on BST.	
1. Insert node 2. Traverse 3. find no. of leaf nodes 4. find no. of internal nodes 5.	
find height of tree	
Outcomes:	
Theoretical Background: Basics of BST, different traversing techniques, and	
algorithms	
Experimentation: Write and execute the program using gcc.	
1. Read integers	
2. Create binary tree with the property binary search tree	
3. Visit the tree in inorder, preorder, postorder	
4. Display the visited nodes	
5. display no.of leaf nodes6. display no. of internal nodes	
1 2	
7. display height of tree Posults and Discussions: All programs are performed	
Results and Discussions: All programs are performed. Conclusion:	
Conclusion:	
Experiment No. 6: Graph	04 Hrs.
Aim and Objectives: Write a program to	07 III 3.
1. create graph using adjacency matrix	
2. Traverse graph using a. BFS b. DFS	
Outcomes:	
Theoretical Background: Basics of Graph, different traversing techniques, and	
algorithms	
Experimentation: Write and execute the program using gcc.	
1. Take the graph as a input	
2. Start at some vertex and traverse it using DFS/BFS	
3. Apply the above procedure for all nodes	
J, J ,	
Results and Discussions: All programs are performed.	

	04 11
Experiment No. 7: Searching Techniques	04 Hrs.
Aim and Objectives: Write a program for	
1. Linear Search	
2. Binary Search	
Outcomes:	
Theoretical Background: Linear and binary search algorithms	
Experimentation: Write and execute the program using gcc.	
Linear Search	
1. Read the array	
2. Search the element	
3. Display the element position if found	
Binary Search	
1. Read the sorted array	
2. Search the element	
3. Display the element position if found	
Results and Discussions: All programs are performed.	
Conclusion:	10 77
Experiment No. 8: Sorting Techniques	10 Hrs.
Aim and Objectives: Write a program for	
1. Bubble Sort	
2. Selection Sort	
3. Insertion Sort	
4. Radix Sort	
5. Quick Sort	
Outcomes:	
Theoretical Background: All sorting algorithms	
Experimentation: Write and execute the program using gcc.	
Quick sort	
1. Read the elements to be sort	
2. Find the proper pivot element	
3. Apply quick sort method to sort the remaining elements	
Selection sort	
1. Read the elements to be sort	
2. Select the minimum element	
3. Apply the selection sort to sort the remaining elements	
Insertion Sort	
1. Start with an empty left hand [sorted array] and the cards face down	
on the table [unsorted array].	
2. Then remove one card [key] at a time from the table [unsorted array],	
and insert it into the correct position in the left hand [sorted array].	
3. To find the correct position for the card, we compare it with each of	
the cards already in the hand, from right to left.	
Results and Discussions: All programs are performed.	
Conclusion:	
	02.11
Experiment No. 9: Hashing Aim and Objectives: Write a program to create Hash Table and	02 Hrs.
	1

2. Search the data in hash table	
3. display the data of hash table	
Outcomes:	
Theoretical Background: Hashing, Hash table, Hash functions	
Experimentation: Write and execute the program using gcc.	
1. Read the key elements from the user	
2. Use the hash function to store data in hash table	
3. Apply required operation on the hash table	
Results and Discussions: All programs are performed.	
Conclusion:	

Textbooks:

1. R. Gilberg, B. Forouzan, "Data Structures: A pseudo code approach with C", Cenage Learning, ISBN 9788131503140(Refer 1,3,4,5).

2.Seymour Lipschutz,G.A.V.Pai ,"Data Structure", Tata McGraw Hill, ISBN-13:978-0-07-060168-0. (Refer Chapter:6)

3.Rohit Khurana,"Data Structures Using C",Vikas publishing House Pvt.ltd,ISBN:978-93259-7565-1.(Refer Chapter:2 and application of DS)

References:

1.E. Horowitz , S.Sahani, S.Anderson-Freed "Fundamentals of Data Structures in C", Universities Press ,2008 ,ISBN 10:8173716056.

Experiment wise Measurable students Learning Outcomes:

- 1. Revise the C concepts
- 2. Implement array data structure to solve various problems
- 3. Implement linked list data structure to solve various problems
- 4. Solve problems using stacks data structures
- 5. Solve problems using queue data structures
- 6. Apply tree data structure to solve various problems
- 7. Implement different graph traversal techniques
- 8. Implement various kinds of searching techniques

9. Assess how the choice of data structures and algorithm design methods that impacts the performance of programs.

10. Solves problems using hashing techniques

Course Course Course	Pre-Requisite: Discrete Mathematics	3	1 -	4
Course	-			
	Description: Automata theory is a subject mainly deals with ased processes in wide variety of engineering fields.	verifica	ation and valie	dation of even
1. To int 2. To in as conte 3. To co for Cont 4. To int 5. To co	Objectives: terpret the formal languages like Regular Language and Content terpret the representation of Regular language as Regular Ex- ext free grammar onstruct Language acceptors like finite automata for Regular language. terpret properties of Context free languages in parsing. ontrast the Turing Machines and its types. Learning Outcomes:	pressio	n and Context	
CO	After the completion of the course the student should be	Bloon	n's Cognitive	
	able to	level	Descriptor	
	summarizes the formal languages like Regular Language and Context free Language	L2	Summarize	
	Constructs Language acceptors like finite automata for Regular Language and Push down Automata for Context free Language.	L3	Construct	
	Analyse properties of Context free languages in parsing.	L4	Analyze	
	Compare types of the Turing Machines.	L2	Compare	

CO-PO Mapping:

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2
CO 1	2										1			
CO 2		2									1			1
CO 3			1								1			1
CO 4	2													
CO 5														

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decl	ared test/quiz/seminar/Group Discussions et	tc.
MSE: Assessment is based on 50% of course of	•	
ESE: Assessment is based on 100% course co	ontent with60-70% weightage for course co	ontent (normally
last three modules) covered after MSE.		
Course Contents:		
Unit 1: Introduction to languages		06 Hrs.
Strings, languages, grammar, types of grammar		
and corresponding regular languages, exampl		
complements of regular languages, Applicatio	ons of regular expressions	
Unit 2: Finite Automata		08 Hrs.
Finite automata definition and representation		
transitions, Equivalence of FA's, NFA's and	-	
of regular expressions and finite automa	ata, Minimization of Finite Automata,	
Application of Finite Automata Unit 3: Context Free Grammar		06 Hrs.
Context Free Grammar- Definition and exa	mples regular grammar languages of a	UO IIIS.
grammar,	imples, regular grammar, languages of a	
BNF and CNF notations, derivation and p	parse tree Ambiguity in grammars and	
languages: removal of ambiguity, Normal		
	forms, converting CFO to CIVIT form,	
Application of Context free grammar		
Unit 4: Push Down Automata		08 Hrs.
Definition, The Language of PDA, Determin		
Acceptance by Final state and empty stack,	Equivalence of PDA's and CFG: CFG to	
PDA, PDA to CFG		06 11
Unit 5: Parsing Parsing – Top-Down, Recursive Descent and I	Pottom Un Derging	06 Hrs.
Pumping lemma for Context free language,		
	intersection and complement of context	
free language		00 II
Unit 6: Turing Machine	. 1 1 1	08 Hrs.
Turing Machines- definition of TM as Lang		
Turing machines, computing a partial functi tape, multitape, Non-deterministic TM and Ur		
Textbooks:	ilversar Twi, Church- Turing machine.	
1. Introduction to languages & Theory of com	nutations – John C. Martin (MGH)	
1. Introduction to fanguages & Theory of com	putations John C. Martin (MOII)	
References:		
1]Introduction to Automata Theory, Languag	es and computation – John E. Hopcraft, R	aieev Motwani
Jeffrey D. Ullman (Pearson Edition).	,	- <u>j</u>
2]Introduction to Theory of Computations – M	Aichael Sipser (Thomson Brooks / Cole)	
Unit wise Measurable students Learning O	utcomes:	
Unit 1: Introduction to languages		
UO 1.1:To interpret regular expressions and it		
UO 1.2:To interpret the regular languages defi	ining	

Unit 2: Finite Automata

UO 2.1:To interpret the design method of FA. UO 2.2:To summarize the mapping of regular expression accept by FA.

Unit 3: Context Free Grammar

UO 3.1:To interpret the regular grammar used in regular languages. UO 3.2:To construct regular languages for various acceptance languages

Unit 4: Push Down Automata

UO 4.1:To summarize push down automata UO 4.2: To design mapping of CFG to PDA and vice verse

Unit 5: Parsing

UO 5.1:To analyze the parsing in compilation.

Unit 6: Turing Machine

UO 6.1:To interpret turing machines model

Title of the Course: Software Engineering	L	Т	Р	Credit
Course Code: UITE0402	3	1	-	4

Course Pre-Requisite: Problem Solving Using C

Course Description: This course gives you fundamentals of software development in the current IT industry. The fundamentals are divided into different parts. The first part deals with different software models followed for development of software. The subsequent parts deals with requirement specification, software design with UML, coding and testing respectively. You will get complete insight of software development process which will help you a lot in your career in IT industry.

Course Objectives:

- 1. Explore different software process models such as the waterfall and evolutionary models
- 2. Describe different components of software requirement specification document
- 3. Elaborate different software level concepts wrt to software design approaches
- 4. Explain different coding standards used in software coding
- 5. Outline different types of testing methodologies

Course Learning Outcomes:

CO	After the completion of the course the student should	Bloom's	s Cognitive
	be able to	level	Descriptor
C01	Compare SE approaches with different software development process models	IV	Analyzing
CO2	Develop different components of software requirement specification (SRS)	III	Applying
CO3	Design software using structured design methodology and object oriented methodology for any real world problem	VI	Creating
CO4	Develop coding for different software designs	III	Applying
CO5	Compare different types of testing techniques	II	Understanding

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3													2
CO3					2									2
CO4					2									
CO5			2											

Faa ah ay A gaaggee an ta		
Feacher Assessment:	n (ISE). One Mid Semester Eveni	notion (MCE
Γwo components of In Semester Evaluatio		
and one EndSemester Examination (ESE) ha		spectively.
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/dec		
MSE: Assessment is based on 50% of course	· · · · · · · · · · · · · · · · · · ·	
ESE: Assessment is based on 100% course		course conter
(normally last three modules) covered after N	MSE.	
Course Contents:		
		10.11
Unit 1: Introduction and Software Process		10 Hrs.
The Problem Domain, SE Challenges, SI		
Desired Characteristics of a Software Proce		
Models- Waterfall Model, Prototype		
Development Methodology, Rapid Applicat		
Systems Development Model Methodo		
Programming Methodology, Feature Driven	Development.	
		06 Hrs.
Unit 2 : Software Requirement Analysis a	ind Specifications	U6 Hrs
		00 1115.
Software Requirements, Problem Analy	sis, Requirements Specification,	00 1115
	sis, Requirements Specification,	00 1115.
Software Requirements, Problem Analy Functional Specifications with use cases, Va	sis, Requirements Specification,	
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches	sis, Requirements Specification, lidation, Metrics	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts,	sis, Requirements Specification, lidation, Metrics Design Notation and Specification,	
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy	sis, Requirements Specification, lidation, Metrics Design Notation and Specification,	
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts.	sis, Requirements Specification, lidation, Metrics Design Notation and Specification,	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts,	
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics,	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams,	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams,	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics,	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams,	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles,	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles,	07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles,	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams,	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and	07 Hrs. 07 Hrs. 06 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and ment Diagrams	07 Hrs. 07 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy. Unit 6: Coding and Testing Programming Principles and Guidelines	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and ment Diagrams , Coding Process, Refactoring,	07 Hrs. 07 Hrs. 06 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy Unit 6: Coding and Testing Programming Principles and Guidelines Verification, Metrics, Testing Fundamental	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and ment Diagrams , Coding Process, Refactoring,	07 Hrs. 07 Hrs. 06 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy Unit 6: Coding and Testing Programming Principles and Guidelines Verification, Metrics, Testing Fundamental Testing.	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and ment Diagrams , Coding Process, Refactoring,	07 Hrs. 07 Hrs. 06 Hrs.
Software Requirements, Problem Analy Functional Specifications with use cases, Va Unit 3: Software Design Approaches Design Principles, Module-Level Concepts, Structured Design Methodology, OO Analy Design Concepts. Unit 4: UML Structural Modeling Classes, Relationship, Common Mechanics, Advanced Classes, Advanced Relationship Packages, Instances and Object Diagram Unit 5: UML Behavioral and Architectur Behavioral: Interactions, Use Cases, Use Cas Activity Diagrams Architectural: Components, Deployment Frameworks, Component Diagrams, Deploy Unit 6: Coding and Testing Programming Principles and Guidelines Verification, Metrics, Testing Fundamental	sis, Requirements Specification, lidation, Metrics Design Notation and Specification, sis and OO Design, OO Concepts, Diagrams and Class Diagrams, os, Interfaces, Types, and Roles, ral Modeling se Diagrams, Interaction Diagrams, , Collaborations, Patterns and ment Diagrams , Coding Process, Refactoring, s, Black-Box Testing, White-Box	07 Hrs. 07 Hrs. 06 Hrs. 06 Hrs.

5. UML User Guide- Grady Booch, James Rumbaugh, Publisher: Addison Wesley (4,5)

References:

1) Software Engineering- A Practitioner's Approach - Roger S. Pressman (TMH)

2) Software Engineering- Ian Sommerville – Pearson

3) Software Engineering by Kogent Wiley India Limited.

Unit wise Measurable students Learning Outcomes: Unit 1: Introduction

UO-1.1) Explain IT industry component

UO-1.2) Differentiate between program and software

UO-1.3) Enlist problems of software and software engineering

UO-1.4) Compare different software process models

UO-1.5) Describe project and configuration management process

Unit 2 : Software Requirement Analysis and Specification

UO-2.1) Describe software requirement process

UO-2.2) Design DFD using data flow modelling with example

UO-2.3) Design class diagram using OO modelling with example

UO-2.4) Develop components of SRS

UO-2.5) Apply metrics and validation for SRS

Unit 3: Software Design Approaches

UO-3.1) Apply design principles to real world problem

UO-3.2) Describe module level concepts of FOA and OOA

UO-3.3) Enlist design and notation used for design

UO-3.4) Apply design methodology to real world problem

Unit 4 : UML Structural Modeling

UO 4.1) Explain classes and relationships

UO 4.2) Design class diagram for real world problem

UO 4.3) Describe advanced class concepts

Unit 5: UML Behavioral and Architectural Modeling

UO 4.1) Explain concepts of interaction modeling UO 4.2) Design interaction diagram for real world problem UO 4.3) Explain concepts of architecture modeling UO 4.4) Design architecture diagram for real world problem

Unit 6: Coding and Testing

UO-5.1) Explain programming principles and guidelines

UO-5.2) Describe coding process

UO-5.3) Apply refactoring with example

UO-5.4) Enlist different types of testing.

UO-5.5) Describe testing process

Title of the Course: Computer Networks	L	Т	Р	Credit
Course Code: UITE0403	3	-	-	3
Course Bro Dequisiter TCD/ID Protocol Suit				

Course Pre-Requisite: TCP/IP Protocol Suit

Course Description: This course provides a solid understanding of each of the most important networking protocols within the IP suite. The Internet protocol suite provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed and received.

Course Objectives:

To make students able to identify client-server model and implement it using socket programming.
 To introduce students with emerging protocols IPv6 and the ICMPv6 and write applications to communicate using IPv6.

3. To make students familiar with architecture and working of protocols like IP, TCP, UDP, DHCP, DNS, FTP, WWW, VoIP, SIP.

4. To make students able to understand working of email system and write an application to send and receive e-mail

5. To make students able to use and analyze various Protocols using Protocol analyzing tools like wireshark and tcpdump.

Course Learning Outcomes:

CO	After the completion of the course the student should be able to	Bloo	m's Cognitive
		level	Descriptor
CO1	recall the basic terminology used in client/server pro-gramming	1	Remembering
CO2	describe architecture/working of various internet appli-cations/protocols.	2	Understanding
CO3	install and con gure FOSS server to provide services in internet.	3	Applying
CO4	analyze various protocols of TCP/IP protocol suite us-ing wireshark and tcpdump.	4	Analyzing
CO5	build complete application for use in Internet using Javaprogramming.	6	Creating

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO1	PSO2
CO1	1									2				
CO2	2									2				
CO3	3					2			3		2			
CO4		3		3	2			2				2		
CO5			3					2						

Assessments :

Teacher Assessment:

Two components of In-Semester-Evaluation (ISE), One Mid-Semester Examination (MSE) and One End-Semester-Examination (ESE) will have 20%, 30% and 50% weights respec-tively.

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/dec		s etc.
MSE: Assessment is based on 50% of course	•	11
ESE: Assessment is based on 100% course	content with 60-70% weightage for cours	se content (normally
last three modules) covered after MSE.		
Course Contents:		
Unit 1: Network Layer		08 Hrs.
Introduction, Network layer services, addre	essing. IP packet format. ARP. RARP.	
ICMP, Packet routing protocols, congestion		
transition from IPv4 to IPv6	control, if vo introduction, dedressing,	
Unit 2: Transport Layer		08 Hrs.
Transport layer functions, UDP- datagram,		
seg-ment, connection, state transition diagra	im, ow control, congestion control, error	
control, timers.		06 Hrs.
Unit 3: Introduction to Application Layer		VO HIS.
Client-Server paradigm, client, server, concu	urrency, socket interface, communication	
using using tcp, communication using udp.		
Unit 4: DHCP, DNS, FTP and TFTP		09 Hrs.
DHCP: Introduction, Previous Protocols, D	OHCP operation, Packet Format, DHCP	
Con-guration.	Space Distribution of name space and	
DNS: Need, Name Space, Domain Name S DNS in internet, Resolution, DNS mass	1 1	
examples, encap-sulation.	ages, Types of records, compression	
FTP: Connections, Communication, Com	mand processing. File transfer, User	
interface, Anonymous FTP, TFTP.	I I I I I I I I I I I I I I I I I I I	
Unit 5: HTTP, Electronic Mail, SNMP		09 Hrs.
HTTP: Architecture, Web Documents, HT	TTP Transaction, Request & Response	
mes-sages: header & examples, Persistent v		
Architecture, User agents, addresses, delaye		
SMTP commands & responses, mail transf	fer phases, MIME, Mail Delivery, mail	
access protocols, SNMP.		00 T
Unit 6: Multimedia in Internet	live oudio/wideo neel time interesti	08 Hrs.
Streaming stored audio/video, streaming		
audio/video, real-time transport protocol (R' (RTCP), voice over IP (VoIP): session initiat	· · · · ·	
Textbooks:	1011 protocor (011) und 11.525.	
1. TCP/IP Protocol Suite by B. A. Forouzan,	TMGH Publication	
·····,		
References:		

Unit wise Measurable students Learning Outcomes: At the end of each of following unit, student should be able to: Unit 1: Network Layer

UO-1.1 To list advantages of IPv6.

- UO-1.2 To compare IPv4 with IPv6 and ICMPv4 with ICMPv6.
- UO-1.3 To summarize strategies for transition from IPv4 to IPv6.

Unit 2: Transport Layer

- UO-2.1 To list services of Transport layer.
- UO-2.2 To compare TCP and UDP services.

Unit 3: Introduction to Application Layer

UO-3.1 To recall the terminology used in client-server paradigm.

UO-3.2 To develop application for client-server communication over TCP/UDP.

UO-3.3 To analyze protocols using wireshark or tcpdump.

Unit 4: DHCP, DNS, FTP and TFTP

UO-4.1 To explain need and working of DHCP, DNS, FTP.

UO-4.2 To use services of DHCP, DNS, FTP.

UO-4.3 To capture and examine packets of DHCP, DNS, FTP.

UO-4.4 To understand and develop application using these protocols.

UO-4.5 To demonstrate use of di erent user agents to access services of DHCP, DNS, FTP, TFTP.

Unit 5: HTTP, Electronic Mail, SNMP

UO-5.1 To explain the working of WWW.

UO-5.2 To explain the mechanism of sending and receiving e-mails.

UO-5.3 To develop applications using SMTP and POP3.

UO-5.4 To tell the use of SNMP.

Unit 6: Multimedia in Internet

UO-6.1 To explain use of Internet for audio/video interaction.

UO-6.2 To list applications and associated protocols for di erent a/v interactions.

UO-6.3 To discuss the working of protocols RTP and VoIP.

		ourse: UITE(Compu 1404	iter Or	ganiza	uon an	a Arch	intectur		L 1 3 -	' P	Cred	lť
			1404 te: Fun	damen	tals of	Prnora	mmina	J.ano		-	- [3	
		-	onics E			LIUgia	311111112	, Dangi	ugt	g− 1 W I .	•		
				-	-								
Course	descr	intion	To in	nart tl	ne nece	essary	fundam	nental r	rinc	inles th	nat is a	essential	to stu
												e necessa	
enginee		-r						- F					-)
	• Objec			a from a		l ale ana		a of oo			~~~~~		
			structur						-	•		processo	r decim
	•							-		-		compare	-
	-	omputer			CICILICI	n or a		y mera	city,	lucitii	y and	compare	uniter
		1		uter ar	chitect	ires an	d organ	nization	s ha	sed on	establi	shed per	forman
metrics	-	simpi	e comp	ater al		aros all	a organ	inzation	5 00		Sauth	sneu per	iorman
	•												
Course	Learn	ing Ou	itcome	5:									
		0											
<u> </u>										DI	, ,	•,•	
CO	After be ab		ompleti	on of t	the cou	irse th	e stude	ent sho	uld	Bloon			
	be ab	ie to								level	Desc	nptor	
<u>CO1</u>	Intor	mnot	tha hi	atom	and d	avalorn	nont o	f mod	0	II	Undo	rstanding	x
CO1		-	the his	story a	and de	evelopi	nent o	n moc	lern	11	Unde	rstanding	
	comp	utei											
CO2	Select	t vario	ous dat	a repr	esentat	ions a	nd exp	plain ł	low	III	Appl	ying	
	arithn	netic a	and log	gical o	operatio	ons ar	e perf	ormed	by				
	comp		<u> </u>										
CO3	_	-	anizatio		-	-		-	the	II	Unde	rstanding	3
CO4		1 1	les and perform	1			it comp	onents		V	Eval	ating	
C04 C05			the rep				ddressi	ing mo	les	v	Eval	lating	
000		ctions s		resenta	tion of	uutu, u		ing mot	<i></i> ,				
CO6	Expla	in the	concept	s of pa	rallel p	rocessii	ng			II	Unde	rstanding	g
) Mapp		DOA	DOA	D05	DOC		DOG	DO			DCO1	DCO
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9 PO 10	PO 11	PSO1	PSO2
CO1	1			2		1				10	11	2	
CO1 CO2	1			3		1							1
CO2 CO3				3							+	2	-
CO3	2	2		2							+	2	
C04	1	2		-								2	
CO6	1	2									1	1	
	nents :		<u>.</u>	1	1	I	L	<u>.</u>		<u> </u>		1	L
		ssment											

A	ring 20%, 30% and 50% weights respectively.	
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE		
6	ent/declared test/quiz/seminar/Group Discussion	
	F course content (Normally first three modules)	
(normally last three modules) covered	% course content with60-70% weightage for	r course conten
Course Contents:	allel MSE.	
Unit 1: Computer Evolution and Pe	rformance	6 Hrs.
A	cture, Structure and Function, Evolution (a	о п г s .
1 0	ning for Performance, Evolution of Intel	
	performance assessment. A top level view of	
	ection- Computer components, Computer	
Function, Interconnection structure, b	1 1 7 1	
Unit 2: CPU Organization		7 Hrs.
8	architecture of a small accumulator based	/ 1115.
	ical CPU with general register organization,	
	ganization of ARM6, CISC Machines:	
Organization of 68020	canization of Artivio, Cise Machines.	
0	nbers, Floating Point Number- The IEEE 754	
-	tion Set: Instruction Formats, Addressing	
	-	
Modes, Self-Study: Instruction Types.		
Unit 3: Data path Design		7 Hrs.
	lers A 4-bit carry-lookahead adder, Design	
of a complete twos-complement a		
1 1	rtson multiplication algorithm for twos-	
	1 0	
	iplication algorithm, Division: Non-restoring	
division algorithm for unsigned intege	ers.	
Unit 4: Control Design		8 Hrs.
C	A controller, Design Examples: Multiplier	
Control, Implementing a multiplier of	control unit, CPU control unit: Control unit	
design: Implementing a program contr	rol unit.	
Unit 5: Memory Organization		7 Hrs.
• 0	teristics, Random access memories: A	
	l-Access Memories: A commercial magnetic	
hard-disk memory unit, Memory Syste	-	
mara-uisk memory unit, memory Syste	C1115.	
Multilevel memories, Address trans	slation, Memory allocation, Caches: Cache	
organization, Cache operation, Addres	•	
Unit 6: Parallel Processing		7 Hrs.

Parallel	Computer	Structures:	Pipeline	Computers,	Array	computers,
Multipro	cessor system	ns, performan	ce of para	llel computers,	Dataflo	w and New
concepts;	Architectura	al Classificati	on Scheme	s: Multiplicity	of Instru	uction- Data
streams, S	Serial vs Para	allel processin	g, Parallelis	sm v/s pipelinir	ng	

Textbooks:

1. John P Hays, — Computer Architecture and Organization^{II}, McGraw-Hill Publication, 1998, ISBN:978-1-25-902856-4, 3rd Edition.

2.W. Stallings, — Computer Organization and Architecture: Designing for performancel, Pearson Education/ Prentice Hall of India, 2003, ISBN 978-93-325-1870-4, 7th Edition. 3.Zaky S, Hamacher, — Computer Organizationl, 5th Edition, McGraw-Hill Publications, 2001, ISBN- 978-1-25-900537-5, 5th Edition.

References:

1] A. Tanenbaum, — Structured Computer Organization^{II}, Prentice Hall of India, 1991 ISBN: 81 – 203 – 1553 – 7, 4th Edition

3] Patterson and Hennessy, — Computer Organization and Design^{II}, Morgan Kaufmann Publishers In, ISBN 978-0-12-374750-1, 4th Edition.

Unit wise Measurable students Learning Outcomes:

Unit 1: Computer Evolution and Performance

ULO 1.1 Understand basics of computer organization

ULO1.2 Understand the structure, function and characteristics of components of computer and computer systems

Unit 2: CPU Organization

ULO 2.1 Study design and architecture of different CPU's, Architecture and extensions ULO 2.2 Study different representation of data types.

Unit 3: Data path Design

ULO 3.1 Design the component of computer, like data path unit ULO 3.2 Study design of adder-subtractor, multipliplication and division algorithms.

Unit 4: Control Design

ULO 4.1 Study design of control unit

Unit 5: Memory Organization

ULO 5.1 Study memory device characteristics, Random access memories. ULO 5.2 Study addresses translation techniques.

Unit 6: Parallel Processing

ULO 6.1 Summarize the parallel processing concepts

Title of t	he Course: Object Oriented Programming	L	Т	Р	Credit
	Code:UITE0405	3	-	-	3
Course l	Pre-Requisite: Computer programming in C				
	Problem solving techniques				
	Description: This course aims to study the object-oriented niques'++ under Linux platform is used as programming la			ng princi	ples
Course l	Learning Objectives [CLO]:				
CLO-1: 7	Γο introduce students with Object Oriented Programming (OOP)	parac	ligm.	
CLO-2: 7	Γο make students familiar with C++ programming language	e.			
CLO-3: 7	Γο make students able to write applications using OOP con	cepts.			
CLO-4:	To make students able to use built-in classes from STL.				
Course l	Learning Outcomes:				
CO	After the completion of the course the student should	Blo	om's	Cogniti	ve
	be able to	leve		Descripto	
CO1	explain object oriented concepts, principles and techniques.	2	τ	Jnderstar	nding
L					

CO2	apply various object oriented features to solve various	3	Applying
	computing problems using C++ language.		
CO3	apply exception handling and use built-in classes from	3	Applying
	STL		
CO4	compare procedure oriented programming and object	4	Analysing
	oriented programming		
CO5	build a complete application using bottom-up design ap-	6	Creating
	proach with team-work in mind		

CO-PO Mapping:

CO	Р 01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO 1	1					1								
CO 2	3	2		2	3								3	
CO 3		3	2	3	3		2						3	2
CO 4						2	3	3		3	1			3
CO							2	2	3	2		3	2	3

|--|

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Unit 1: Introduction

Introduction to procedural & object-oriented programming, Limitations of procedural programming, Need of object-oriented programming, Fundamentals of object-oriented programming: objects, classes, data members, methods, messages, data encapsulation, data abstraction and information hiding, inheritance, polymorphism.

Unit 2: Basics of C++ programming

Variable declarations, global scope, const variables, reference variables, function proto-types, functions with default arguments, call by value, call by reference, returning by reference, call by pointer, inline functions, constant arguments, `cin', `cout', formatting and I/O manipulators, Classes and Objects defining Class, data members, member functions, Access specifiers, public, private, protected, constructor, destructor, array of objects, passing objects to functions, returning object.

Unit 3: Inheritance

Need of Inheritance, Concept, public, private, protected inheritance, Single inheritance, Multiple and multilevel inheritance, Hybrid Inheritance, Virtual base class, overriding of member functions, static variable, static function, friend function, friend class

Unit 4: Polymorphism

Pointers basics of memory management, New and delete operators, Pointer to object, Pointer to data members, this pointer. Need of Polymorphism, concept, Compile time polymorphism or early binding: function over loading and operator overloading, opera-tor overloading using member function and friend function, overloading - unary, binary, arithmetic operators, relational operators, Overloading new and delete operators, insertion and extraction operators, Run time polymorphism or late binding using Virtual function, pure virtual function, Abstract class, Type conversion

Unit 5: Files and Streams

Concept of Streams, concept of File, opening and closing a le, detecting end-of- le, le modes, le pointer, reading and writing characters, strings and objects to the le, operations to move le pointers i.e seekg, seekp, tellg, tellp.

Unit 6: Advanced C++ features:

Introduction to Generic Programming using Templates: Function template and class template, Introduction to Standard Template Library (STL), containers, iterators and algorithms, study of container template classes for vectors and stacks and related algorithms

Text Books:

- C++: The Complete Reference Fourth Edition Herbert Schildt (McGraw-Hill)
- C++ programming: From Problem Analysis to Program Design Fifth Edition -D.S. Malik (Cengage Learning)
- C++ Programming with language –Bjarne Stroustrup (AT & T)

Reference Books:

- Object Oriented Programming with C++ Fourth Edition-E Balguruswamy (McGraw Hill)
- Object oriented Programming in C++ 3rd Edition-R.Lafore (Galgotia Publications)
- C++ programming –John Thomas Berry(PHI)
- Object –Oriented Analysis & Design: Understanding System Development with UML 2.0, Docherty, Wiley India Ltd.
- http://www.spoken-tutorial.org/ NMEICT Project of Govt. Of India

Unit wise Measurable students Learning Outcomes:

Unit 1: Introduction

UO1-1: Identify Basic difference between c & c++.

UO1-2: Identify Basics OOP.

Unit 2: Basics of C++ programming

UO2-1: Explain use of cout and cin for input output operations.

UO2-2: Implement class with proper use of access specifiers.

Unit 3: Inheritance

UO3-1: Define parent child relationship between classes.

UO3-2: Understand various forms and types of inheritance.

Unit 4: Polymorphism

UO4-1: define polymorphism and method overloading and overriding.

UO4-2: Apply concept of operator overloading.

Unit 5: Files & Streams

UO5-1: Implement different file handling programs.

Unit 6:Advace C++ features

UO6-1: Implement programs using Exception handling UO6-2: Solve problems using STL

I III U	f the Course: Object Oriented Programming Lab	L	T P	Credit
	e Code:UITE0431	-	- 2	1
Course	e Pre-Requisite: Fundamentals of Programming Language C			ł
Course	e Description:			
This co	purse aims to study the object-oriented programming principle	s and te	echnique	es'++
	Linux platform is used as programming language.			
	e Objectives:			
	: To introduce students with Object Oriented Programming (C		aradigm	•
CLO-2	: To make students familiar with C++ programming language			
CLO-3	: To make students able to write applications using OOP conc	ents		
	. To make students use to write appreadons using OOT cone	-Pro-		
CLO-4	: To make students able to use built-in classes from STL.			
Course	e Learning Outcomes:			
00		DI	• •	• . •
CO	After the completion of the course the student should be		m's Cog	
	able to	level	Descr	riptor
CO CO1	-		-	riptor
	able to apply various object oriented features to solve various	level	Descr	riptor
CO1	able to apply various object oriented features to solve various computing problems using C++ language.	level 3	Descr Apply	iptor /ing
	able to apply various object oriented features to solve various	level	Descr	iptor /ing
CO1	able to apply various object oriented features to solve various computing problems using C++ language. apply exception handling and use built-in classes from	level 3	Descr Apply	iptor /ing
CO1	able to apply various object oriented features to solve various computing problems using C++ language.	level 3	Descr Apply	iptor /ing
CO1	able to apply various object oriented features to solve various computing problems using C++ language. apply exception handling and use built-in classes from	level 3	Descr Apply Apply	iptor /ing
CO1 CO2	able to apply various object oriented features to solve various computing problems using C++ language. apply exception handling and use built-in classes from STL compare procedure oriented programming and object	level 3 3 3	Descr Apply Apply	r iptor ving ving
CO1 CO2	able to apply various object oriented features to solve various computing problems using C++ language. apply exception handling and use built-in classes from STL	level 3 3 3	Descr Apply Apply	r iptor ving ving
CO1 CO2	able to apply various object oriented features to solve various computing problems using C++ language. apply exception handling and use built-in classes from STL compare procedure oriented programming and object	level 3 3 3	Descr Apply Apply Apply Ann	r iptor ving ving

CO-PO Mapping:

proach with team-work in mind

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2
CO 1	3	2		2	3								3	
CO 2		3	2	3	3		2						3	2
CO 3						2	3	3		3	1			3
CO 4							2	2	3	2		3	2	3

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment		
	Marks	
ISE	50	
ESE	50	
	ned/ Quiz/ Mini-Project assigned/ Presentation/ Gr	oup
Discussion/ Internal oral etc.		
ESE: Assessment is based on oral	examination	
Course Contents:		
Experiment No. 1		04 Hrs.
Aim and Objectives:		
· · · · · · · · · · · · · · · · · · ·	tions, functions with default arguments, reference	
parameters		
Outcomes:		
Theoretical Background: basics		
Experimentation: Write and exe	1 0 00	
Results and Discussions: All pro	grams are performed.	
Conclusion:		
Experiment No. 2		10 Hrs.
-	entation of Class Objects, Constructor, destructor,	10 1115.
constructor overloading		
Outcomes:		
	of $C \mapsto language$	
Theoretical Background: basics		
Experimentation: Write and exe		
Results and Discussions: All pro Conclusion:	grams are performed.	
Conclusion.		
Experiment No. 3:		
-		04 Hrs.
Aim and Objectives:		04 Hrs.
Aim and Objectives: Implementation of Operator and f	function overloading	04 Hrs.
Implementation of Operator and f	function overloading	04 Hrs.
Implementation of Operator and f Outcomes:	-	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics	of C++ language	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe	of C++ language ecute the program using g++.	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro	of C++ language ecute the program using g++.	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion:	of C++ language ecute the program using g++.	
Implementation of Operator and f Outcomes: Fheoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4:	of C++ language ecute the program using g++.	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4:	of C++ language ecute the program using g++. ograms are performed.	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++.	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++.	
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion:	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++. ograms are performed.	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 5: Demonstration	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++.	04 Hrs. 04 Hrs. 06 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 5: Demonstration	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++. ograms are performed.	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 5: .Demonstrati Outcomes: Theoretical Background: Basics	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++. ograms are performed.	04 Hrs.
Implementation of Operator and f Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 4: Implementation of Multiple and n Outcomes: Theoretical Background: basics Experimentation: Write and exe Results and Discussions: All pro Conclusion: Experiment No. 5: Demonstration	of C++ language ecute the program using g++. ograms are performed. nultilevel inheritance using virtual base class of C++ language ecute the program using g++. ograms are performed.	04 Hrs.

Results and Discussions: All programs are performed Conclusion:	
Experiment No. 6: Implementation of Friend function, friend class Theoretical Background: basics of C++ language	04 Hrs.
Experimentation: Write and execute the program using g++. Results and Discussions: All programs are performed. Conclusion:	
 Experiment No. 7: Implementation of class and function Templates Outcomes: Theoretical Background: basics of C++ language Experimentation: Write and execute the program using g++. Results and Discussions: All programs are performed. Conclusion: 	04 Hrs.
 Experiment No. 8: Implementation of Exception Handling Outcomes: Theoretical Background: basics of C++ language Experimentation: Write and execute the program using g++. Results and Discussions: All programs are performed. Conclusion: 	10 Hrs.
 Experiment No. 9: Implementation of File Handling and STL using OOP concepts Outcomes: Theoretical Background: basics of C++ language Experimentation: Write and execute the program using g++. Results and Discussions: All programs are performed. Conclusion: 	02 Hrs.
 Text Books: C++: The Complete Reference Fourth Edition - Herbert Schildt (McGraw- C++ programming: From Problem Analysis to Program Design Fifth Editi Malik (Cengage Learning) C++ Programming with language –Bjarne Stroustrup (AT & T) 	,
 References: Object Oriented Programming with C++ Fourth Edition-E Balguruswamy Hill) Object oriented Programming in C++ 3rd Edition-R.Lafore (Galgotia Puble) C++ programming –John Thomas Berry(PHI) 	

Title of t	he Course: Problem Solving using Computer	L	Т	P	Credit			
Course (Code: UITE0432	1	-	2	2			
Course I	Prerequisite: Fundamentals of Programming							
Course I	Description:							
This cour	rse aims at giving students a basic knowledge of Python Pro	ogram	minį	g.				
Course (Dbjectives:							
1. To dev	elop problem solving skills.							
2. To und	lerstand Python programming environment.							
3. To wri	te, run, document programs in python.							
Course I	Learning Outcomes:							
CLO	After the completion of the course the student should	Blo	Bloom's Cognitive					
	be able to	leve	el 1	Descri	ptor			
CLO1	Recall the basics concept of Python programming.	1]	Remer	nber			
CLO2	Summarize different decision control and looping constructs in python	2	I	Under	stand			
CLO3	Write python programs related to simple-moderate	3	1	Apply				

	constructs in python		
CLO3	Write python programs related to simple-moderate	3	Apply
	mathematical/logical problems.		
CLO4	Experiment with concept of files handling and exception	3	Apply
	handling.		

CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	2												
CO2		2	1										
CO3		1	3	1								1	
CO4		1	2	1	1	1						1	1

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50
ISE are based on practical performed/ Quiz	/ Mini-Project assigned/ Presentation/ Group
Discussion/ Internal oral etc.	

ESE: Assessment is based on Practical oral examination

Course Contents: Unit 1: Introduction to Python Features of Python, Identifiers, variables, comments, operators, Input/Output, Setting up authon programming environment	02 Hrs.
Setting up python programming environment. Unit 2: Python Data Structures Boolean, Numbers, Strings, List, Tuple, Dictionary, Set	02 Hrs
Unit 3: Control Flow and Function Control Flow: Decision Making, Control Statements, Loops, Nested loops Function: Function definition, calling function, function argument, variable	02 Hrs.
scope, recursive function Unit 4: Modules and Packages What are Modules?, Built in Modules, Creating modules, import statement, Namespace and scope, Packages	02 Hrs.
Unit 5: File Handling File Object:File Built-in function, File Built-in methods, File Built-in Attributes, standard files and command line arguments.	02 Hrs.
Unit 6: Exception Handling Built-in Exception, Detecting and Handling exception- <i>tryexcept, try</i> statement with multiple <i>except, except</i> statement with multiple exception, catching all exception, Exceptional arguments, <i>else</i> clause, <i>Finally</i> clause, <i>try-finally</i> statement	02 Hrs.
Textbooks:Wesley J Chun, "Core Python Programming", Second Edition, Pearson Publ	ication
 References: 1. Jeeva Jose & P. Sojan Lal, "Introduction to computing and Problem So Python", Khanna Book Publishing Co. (p) Ltd 2. Timothy A. Budd, "Exploring Python", Tata McGraw-Hill Publication 	olving with
 Unit wise Measurable students Learning Outcomes: Unit 1:Introduction to Python UO 1.1: Describe the Identifiers, variables, comments, operators, Input/Output, Unit 2: Python Data Structures 	
UO 2.1: Explain Boolean, Numbers, Strings, List, Tuple, Dictionary, Set.Unit 3: Control Flow and FunctionUO 3.1: Explain different Decision Making statements and Functions.	
Unit 4: Modules and Packages UO 4.1: Create and import modules and packages.	
Unit 5: File Handling UO 5.1: Understand and summarize different File handling operations.	
Unit 6: Exception Handling ULO 6.1: Experiment with exception Handling.	

Course Contents:	
Experiment No. 1: Installation of Python	02 Hrs.
Aim and Objectives: To download and install python on Windows/Linux.	
Outcomes: Student will be able to run python on Windows/Linux.	
Theoretical Background:	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 2:	02 Hrs.
Aim and Objectives: To understand basic concept of Identifiers, reserved	02 1115.
keywords, variables, comments, operators, Numbers.	
Outcomes:	
Theoretical Background: Identifiers, reserved keywords, variables, comments,	
operators,Numbers.	
Experimentation:	
1. Write a program that declares 3 integers, determines and prints the largest and	
smallest in the group.	
2. Write a program that accepts two numbers from the user and print their sum.	
3. Write a program to calculate simple interest.	
Results and Discussions: All programs are performed.	
Conclusion:	
Experiment No. 3:	02 Hrs.
Aim and Objectives: To understand basic concept String, List and	
Tuples, set, dictionaries	
Outcomes:	
Theoretical Background: String,List and Tuples,set,dictionaries	
Experimentation:	
1. Write a Python program to add 'ing' at the end of a given string (length should be at least 3). If the given string already ends with 'ing' then add 'ly' instead. If	
the string length of the given string is less than 3, leave it unchanged.	
Sample String : 'abc'	
Expected Result : 'abcing'	
Sample String : 'string'	
Expected Result : 'stringly'	
1 01	1
2. Write a Python program to get a list, sorted in increasing order by the last	
2. Write a Python program to get a list, sorted in increasing order by the last element in each tuple from a given list of non-empty tuples. Sample List : [(2, 5), (1, 2), (4, 4), (2, 3), (2, 1)]	
element in each tuple from a given list of non-empty tuples.	
element in each tuple from a given list of non-empty tuples. Sample List : $[(2, 5), (1, 2), (4, 4), (2, 3), (2, 1)]$	

SampleDictionary(n=5) :	
Expected Output : {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}	
4. Write a Python program to create an intersection, union, difference of sets.	
Results and Discussions: All programs are performed	
Conclusion:	
Emperiment No. 4. Desision Making	02 11
Experiment No. 4: Decision Making Aim and Objectives: To understand different decision making statements.	02 Hrs.
Outcomes:	
Theoretical Background: Decision Making-if,ifelse,ifelifelse	
Experimentation:	
1.Write a program to find GCD of two numbers.	
2.Write a python program to check wheather a specified value is contain in list.	
2.Write a program that prints the numbers from 1 to 20. But for multiples of three	
print "Fizz" instead of the number and for the multiples of five print "Buzz". For	
numbers which are multiples of both three and five print "FizzBuzz".	
Results and Discussions: All programs are performed	
Conclusion:	
Exportment No. 6: Function	02 Hrs.
Experiment No. 6: Function Aim and Objectives: To understand concept of function.	02 H I'S.
Outcomes:	
Theoretical Background: function.	
Experimentation:	
1.Write a program to find factorial of a number using recursion.	
2.Write a program to find LCM of two number with and without using GCD	
3. Write a Python function that accepts a string and calculate the number of upper	
case letters and lower case letters.	
Results and Discussions: All programs are performed	
Conclusion:	
Experiment No. 7: Modules and Packages	02 Hrs.
Aim and Objectives: To understand concept of Modules and Packages.	02 111 5.
Outcomes:	
Theoretical Background:	
Experimentation:	
1. Write a program to shuffle a deck of cards using random module.	
2. Write a program to check whether given string is palindrome or not. Import	
the package to see whether input string is palindrome or not.	
3. Write a python function that print out the first n rows of Pascal Triangle.	
Import the module to accept n from user.	
Results and Discussions: All programs are performed	
Conclusion:	
Experiment No. 8: File Handling	02 Hrs.
Aim and Objectives: To understand concept of File handling.	V = 11 15•
Outcomes:	
Theoretical Background:	

Experimentation:						
1. Write a program to append a file with the content of another file.						
2. Write a program to insert a sentence and delete a sentence from the specified						
position from the file.						
3. Write a python program to search a word and replace with another word for all						
the occurrences in file.						
Results and Discussions: All programs are performed						
Conclusion:						
Experiment No. 9: Exception Handling						
Aim and Objectives: To understand concept of Exception Handling.						
Outcomes:						
Theoretical Background:						
Experimentation:						
1. Write a function to compute 5/0 and use try/except to catch the exceptions.						
2. Write a program to handle exception for attempting to open a non-existent file.						
Results and Discussions: All programs are performed						
Results and Discussions: All programs are performed						

Course Name: Problem Solving Using Computers (Lab)

Course Code: UITE0432

Problem Statements:

PSUCPBLPB01:Implement Dice Rolling Simulator

"The Goal: Like the title suggests, this project involves writing a program that simulates rolling dice. When the program runs, it will randomly choose a number between 1 and 6. (Or whatever other integer you prefer — the number of sides on the die is up to you.) The program will print what that number is. It should then ask you if you'd like to roll again. For this project, you'll need to set the min and max number that your dice can produce. For the average die, that means a minimum of 1 and a maximum of 6. You'll also want a function that randomly grabs a number within that range and prints it."

PSUCPBLPB02: Implement method to guess the Number.

"This project also uses the random module in Python. The program will first randomly generate a number unknown to the user. The user needs to guess what that number is. (In other words, the user needs to be able to *input* information.) If the user's guess is wrong, the program should return some sort of indication as to how wrong (e.g. The number is too high or too low). If the user guesses correctly, a positive indication should appear. You'll need functions to check if the user input is an actual number, to see the difference between the inputted number and the randomly generated numbers, and to then compare the numbers."

PSUCPBLPB03: Implement Mad libs Generator

"The program will first prompt the user for a series of inputs a la Mad Libs. For example, a singular noun, an adjective, etc. Then, once all the information has been inputted, the program will take that data and place them into a premade story template. You'll need prompts for user input, and to then print out the full story at the end with the input included."

PSUCPBLPB04: Implementation of TextBased Adventure Game

"A complete text game, the program will let users move through rooms based on user input and get descriptions of each room. To create this, you'll need to establish the directions in which the user can move, a way to track how far the user has moved (and therefore which room he/she is in), and to print out a description. You'll also need to set limits for how far the user can move. In other words, create "walls" around the rooms that tell the user, "You can't move further in this direction."

PSUCPBLPB05: Implementation of Hangman

"The main goal here is to create a sort of "guess the word" game. The user needs to be able to input letter guesses. A limit should also be set on how many guesses they can use. This means you'll need a way to grab a word to use for guessing. (This can be grabbed from a pre-made list. No need to get too fancy.) You will also need functions to check if the user has actually inputted a single letter, to check if the inputted letter is in the hidden word (and if it is, how many times it appears), to print letters, and a counter variable to limit guesses."

PSUCPBLPB06: Implement the turtle race game

"In this project you will use loops to create a racing turtle game and draw a race track. Need to create vertical race tracks. The tracks should be drawn fast. Now for the fun bit add some racing turtles. It would be really boring if the turtles did the same thing every time so they will move a random number of steps each turn. The winner is the turtle that gets the furthest in 100 turns. "

PSUCPBLPB07:Create a dictionary of colors

"In this project you will create a dictionary of colors which maps hard to remember color codes into friendly names. hex color codes is really flexible but they are hard to remember. In Python, a dictionary is even more flexible so create a dictionary to map from human-friendly color names (keys) to computer-friendly hex codes (values)."

Sr. No.	Activity	Timeline
1	PBL awareness in class	1 st week
2	Announcement of problem/s for PBL	2 nd week
3	Team formation	3 rd week
4	Project ISE I:Synopsis presentation	5 th week
5	Completion of corrections/improvements in synopsis	6 th week
6	Project ISE II: Project Progress Presentation with Model/case study	10 th week
7	Completion of correction/improvements in Evaluation II	11 th week
8	End Semester Evaluation of Project	13 th week
9	Determining future scope for improvement	14 th week

2. Activities with timeline:

3. Assessment Scheme:

- ISE-I
- ISE-II
- Project ESE

4. Evaluation Scheme:

- **Project ISE I :** Synopsis presentation for 5 marks (evaluation with rubrics)
- Project ISE II: Project Progress Presentation with Model/case study for 5 marks (evaluation with rubric)
- End Semester Evaluation of Project: Multimedia presentation and demonstration of working models for 15 marks out of 25 of course lab ISE (evaluation with rubrics)

Title of the Course: Computer Networks Lab	L	Т	Р	Credit			
Course Code:UITE0433	-	-	2	1			
Course Prerequisite: Fundamental knowledge C Programming Language.							

Course Description:

The objective of this lab course is to provide students solid understanding of the various protocols of TCP/IP protocol suite. Students will gain practical knowledge by writing and executing programs in C/C++ using socket programming. Students will be also able to analyze standard internet protocols.

Course Objectives:

After completion of this course students will be able to

- 1. identify client-server model and implement it using socket programming.
- 2. understand working of various Internet services.
- 3. use protocol analysing tools.

Course Learning Outcomes:

СО	After the completion of the course the student should be able to	Bloom's Cognitive				
		level Descript				
CO1	write applications using TCP/IP protocols	3	Applying			
CO2	install and configure FOSS server to provide services in internet.	3	Applying			
CO3	analyze various protocols of TCP/IP protocol suite.	4	Analyzing			

CO-PO Mapping:

CO	PO1	PO 2	PO3	PO 4	PO5	PO 6	PO 7	PO8	PO 9	PO10	PO 11	PO 12	PSO1	PSO2
CO1		2												
CO2		3	2	2	1									3
CO3		2		3									2	

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on Practical Oral Examination

Course Contents:

Experiment No. 1: Study socket programming API in C/C++.

02 Hrs

Aim and Objectives:	
To study APIs of C/C++ used for socket programming: socket(), bind(),	
listen(), connect(), accept(), read(), write(), sendto(), recvfrom()	
To study the steps required at server and client side of application.	
Experiment No. 2: Well known client	02 Hrs.
Aim and Objectives:	
Write client application to get the services of simple well known client	
using TCP/UDP like daytime, echo, finger, etc.	
Experiment No. 3: Iterative UDP Server / Client	02 Hrs
Aim and Objectives:	
Write application using UDP to provide iterative service.	
Experiment No. 4: Concurrent TCP Server / Client	02 Hrs
Aim and Objectives:	
Write application using TCP to provide concurrent service.	
Experiment No. 5: Communicating using IPv6	02 Hrs
Aim and Objectives:	
Write application using TCP/UDP to provide communication using IPv6.	
while application using TCT/ODT to provide communication using IT vo.	
Experiment No. 6: Packet Capturing and analysis	02 Hrs
Aim and Objectives:	
Study wireshark/ethereal to capture packets in network and do analysis of	
different protocols.	
Experiment No. 7: Web client	02 Hrs.
Aim and Objectives:	
Write application to fetch web page from web server using HTTP	
messages.	
nessages.	
Experiment No. 8: SMTP user agent	02 Hrs.
Aim and Objectives:	
Write program to send email using SMTP commands.	
Experiment No. 9: POP3 user agent	02 Hrs.
Aim and Objectives:	
Write program to send retrieve email using POP3 commands.	
Experiment No. 10: FOSS Server	02 Hrs.
	V2 111 5.
Aim and Objectives:	
Install any FOSS server. Configure it to provide service in LAN and	
Internet.	

Title of the Course : Mini Project-I	L	Т	Р	Credit
Course Code : UITE0441	-	-	2	1

Course Pre-Requisite: C,C++ or any free and open source software

Course Description: This course aims at developing mini project based on technologies learnt. **Course Objectives:**

Students should be able

1. To apply Software engineering approach to solve real life problem.

2. To learn skills of team work & team building to accomplish common goal

3. To design and develop logical skills to use appropriate data structures for solving real life engineering problem.

Course Learning Outcomes:

СО	After the completion of the course the student should be	Bloom's	Cognitive
co	able to	level	Descriptor
CO 1	To apply software engineering approach to solve real life problem.	2 & 3	Understanding& Applying
CO 2	Learn the skills of team work & team building to accomplish common goal	2	Understanding
CO 3	Design and Develop logical skills to use appropriate data structures for solving real life engineering problems.	5	Creating

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	P 0 11	P 0 12	PSO 1	PSO2
CO 1	3				1	2			3	1			1	
CO 2		3	2			1			3	3			1	3
CO 3			3			2			2	2	1		1	2

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50
ISE are based on practical performed/ Quiz/ M	lini-Project assigned/ Presentation/ Group Discu

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on Practical oral examination

Description: The mini project should be undertaken preferably by a group of 3-4 students who will jointly work and implement the project. The mini project must be based upon any real life problem statement.

Platforms: Free and Open source software.

- 8. The group will select a problem with the approval of the guide and prepare the solution guidelines for its implementation.
- 9. The same should be put in the form of synopsis (3 to 5 pages), stating the usage of logic, algorithms and suitable data structures necessary for implementation of the solution as per software engineering approach.
- 10. Further the group is expected to complete analysis of problem by examining the possible different inputs to the system and the corresponding outputs.
- 11. The term work submission is to be done in the form of a report containing the details of the problem, solution techniques, implementation details, input-output scenarios and the conclusion. The project must be implemented using technologies covered earlier in previous semester.

Title of the Course: Soft Skills	L	Τ	Р	Credit
Course Code:UITE0461	1	1	-	-
Course Pre-Requisite:				

Course Description: Soft skills are a combination of people skills, social skills, communication skills, character traits, attitudes, career attributes, social intelligence and emotional intelligence quotients among others that enable people to navigate their environment, work well with others, perform well, and achieve their goals with complementing hard skills.

Course Objectives:

- 12. Explain the importance of soft skills in corporate life.
- 13. Develop written skills of students to write corporate letters/emails.
- 14. Develop communication skills required for corporate etiquettes and ethics.
- 15. Develop presentation skills required for professional life.
- 16. Develop the ability to work in team.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Make use of effective communication skills in the	3	Applying	
	corporate world.			
CO2	Construct effective business letters/emails.	6	Creating	
CO3	Demonstrate the corporate etiquettes and ethics	2	Understanding	
CO4	Construct effective business presentations.	6	Creating	
CO5	Work in team and show leadership skills.	2	Understanding	

CO-PO Mapping:

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2
CO 1												1	1	
CO 2												1	1	
CO 3								2					2	
CO 4												1	1	
CO 5									2				1	

Assessments : Audit Course

Course Contents:	
Unit 1: Art of communication	02 Hrs.
Introduction to Soft Skills, Communication Theory, Effective Communication Skills,	
Barriers and Filters, Active Listening, Non Verbal Communication, Body Language.	
Unit 2: Business Writing Skills	03 Hrs.

Dusiness Letters/Empile Econot and Style Types of Dusiness Letter/Empile sales			
Business Letters/Emails - Format and Style, Types of Business Letter/Email – sales, order, complaint, adjustment, inquiry, follow-up, letter of recommendation, acknowledgement and resignation.			
Unit 3: World of teams	02 Hrs.		
Team concept, Elements of team work, Building an effective team, Role of Team	·		
Leader, Team based activities.			
Unit 4: Adapting to corporate life	02 Hrs.		
Corporate Grooming and dressing Business Etiquette Business Ethics Dinning Etiquette	0-------------		
Ethics policy.			
Unit 5: Discussions, decisions and presentations	03 Hrs.		
What are group discussions, Types of Group Discussions, Corporate Presentations,	05 1115.		
Decision making, Resume Writing.			
Unit 6: Job Interview: Types of Interviews -Telephonic, face to face, video, structured,	02 Hrs.		
unstructured, behavioral, problem solving, panel, Importance of body language.			
Textbooks:	1		
 Personality Development and Soft- Skills , Barun K. Mitra ,Oxford University Pro Business Communication : Making Connections in a Digital World 11th Ec Paperback, Marie E. Flatley, Neerja Pande, Raymond V. Lesikar, Kathryn Rentz) 			
Unit wise Measurable students Learning Outcomes:			
Unit 1: Art of communication			
UO1.1) To demonstrate the effective communication skills.			
UO1.2) To make use of appropriate body language.			
Unit 2: Pusiness Writing Skills			
Unit 2: Business Writing Skills UO2.1) To interpret the importance of business writing skills.			
UO2.2) To apply the appropriate business etiquettes in business letter/email.			
0.02.2) To upply the upplopline ousliess enqueties in ousliess letter/email.			
Unit 3: World of teams			
UO3.1) To explain the importance of team in corporate world.			
UO3.2) To demonstrate various team activities.			
Unit 4: Adapting to corporate life			
UO4.1) To demonstrate business etiquettes and ethics.			
UO4.2) To demonstrate corporate dressing.			
Unit 5: Discussions, decisions and presentations			
UO5.1) To demonstrate group discussion activity.			
UO5.2) To apply presentation skills in a presentation.			
Unit 6: Job Interview:			
UO6.1) To explain the importance of job interview techniques.			
UO6.2) To make use of job interview skills while facing an interview.			